P\
A\
X

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

9

// \\\
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Nonlinear Wave Packets in the Kelvin-Helmholtz
Instability

M. A. Weissman

Phil. Trans. R. Soc. Lond. A 1979 290, 639-681
doi: 10.1098/rsta.1979.0019

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at
the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1979 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;290/1377/639&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/290/1377/639.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 639 ]

NONLINEAR WAVE PACKETS IN
THE KELVIN-HELMHOLTZ INSTABILITY

By M. A. WEISSMANY
The National Maritime Institute, Teddington, Middlesex, U.K.
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arbitrary initial conditions. Among the analytical results, it is shown that (1) the non-
linear effects can be stabilizing or destabilizing depending on the density ratio, (2) the
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640 M. A. WEISSMAN

the amplitude equation exist representing modulations of permanent form travelling
faster than the signal velocity of the linear equation (in particular, a solution is found that
represents a solitary wave packet), and (4) the linear solution to the impulsive initial
value problem has ‘fronts’ which travel with the two (multiple) values of the group
velocity (the packet as a whole moves with the mean of the two values).

Numerical solutions of the amplitude equation (a nonlinear, unstable Klein-Gordon
equation) are also presented for the case of nonlinear stabilization. These show that the
development of a localized disturbance, in one or two dimensions, is highly dependent
on the precise form of the initial conditions, even when the initial amplitude is very small.
The exact solutions mentioned above play an important réle in this development.
The numerical experiments also show that the familiar uniform solution, an oscillatory
function of time only, is unstable to spatial modulation if the amplitude of oscillation
is large enough.

1. INTRODUCTION

The nonlinear development of the Kelvin—Helmbholtz instability has been studied previously by
Drazin (1970) and Nayfeh & Saric (1971, 1972) for the case where the amplitude of an unstable
wave is uniform in space and growing only in time. Here, following the lead of Newell & White-
head (1969) (for thermal convection), Stewartson & Stuart (1971) (for plane Poiseuille flow),
Lange & Newell (1971) (for the buckling problem), and Pedlosky (1972) (for baroclinic insta-
bility), we study the development and propagation of packets of waves, wave trains in which the
amplitude is a function of space as well as time. (Many of the results presented here have been
summarized in Weissman (1972). See also Weissman (1973).)

The Kelvin—-Helmholtz model considered here is the classical one of Lord Kelvin (1871): two
layers of immiscible, incompressible, inviscid fluid in relative, irrotational motion. The basic
velocity and density profiles are uniform in each layer but discontinuous at the interface, where
surface tension exists. Of major concern is the nonlinear development of arbitrary disturbances
when this flow is ‘slightly’ unstable, thatis, when the velocity difference exceeds the critical value
by a small amount. However, the derivation of the governing equation is general enough to
include stable and marginally unstable waves at other points in parameter space.

This highly simplified model is well known as an instructive example in the theory of shear
flow instability, where perhaps its greatest value still lies. (The results presented here are believed
to be typical of flow instabilities of ‘inviscid’ character.) However, Thorpe (1969) has demon-
strated that the model is directly applicable to (at least) some real flows. In his experiment, the
onset of instability was predicted well by the inviscid discontinuous model, even though viscous
boundary layers were, of course, present at the interface.

Thorpe used immiscible fluids of similar density; for fluids of large density difference, such as air
over water, the situation is not so clear. Kelvin himself recognized that the model does not predict
the onset of waves when the wind flows over a body of water. This is due to the presence of other
mechanisms for wave generation, such as that in the shear flow model of Miles (1957). However,
the Kelvin—-Helmholtz mechanismt can still operate in more complicated flows, and in some cir-
cumstances it could be dominant. For example, Miles (1959) has shown that when the shear flow
mechanism is stabilized by a large amount of dissipation in the heavier fluid, Kelvin—Helmholtz
instability can still occur. We shall return to the important question of the relevance of the
Kelvin—-Helmholtz model to the flow of air over water in the summary. In any case, in the bulk of
the following analysis, the density ratio of the two layers is allowed to be arbitrary.

1 That is, the occurrence of a pressure component in phase with the wave crests. Kelvin—-Helmholtz instability
results when this pressure becomes so large that it overwhelms the restoring forces of gravity and surface tension.
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THE KELVIN-HELMHOLTZ INSTABILITY 641

Kelvin (1871) determined the linear stability characteristics of his model by using what is now
known as the method of normal modes (in fact, this appears to have been the first time the method
- was used to study hydrodynamic stability (Rayleigh 1880)). By linearizing the equations and
assuming a sinusoidal disturbance, one obtains a stability diagram as given in figure 1, where Uis
the velocity difference, or shear, between the two layers (U, suitably non-dimensionalized, is the
‘stability parameter’ for this problem) and # is the wavenumber in the U-direction of the dis-
turbance. The so-called ‘neutral curve’ (or ‘neutral surface’ if oblique waves are allowed)
separates the stable and unstable regions. In the linear problem, the solution for an arbitrary
disturbance can be found by taking an appropriate sum of these normal modes.

U
A
U,
unstable
U-+4 stable
U
Z 4
u_—s,i'_.,l
0(4})

Ficure 1. The neutral curve.

Whenever the shear is above the critical level, U in figure 1, there is a band of waves that can
grow exponentially, and the linear solution is valid only for a short period of time. When the
disturbance becomes large (in a sense that can be well defined, see § 3), the linear approximation
is no longer valid (i.e. the solution has become finite amplitude’ as opposed to ‘infinitesimal’).
Thus it is especially important to consider nonlinear effects for the unstable modes. This has not
yet been accomplished in general; however, in certain regions of parameter space, nonlinear
solutions can be found by use of the methods of asymptotic expansions and multiple scaling (see,
for example, Cole 1968).

Multiple scaling relies on the wave amplitude being slowly modulated in time or space.
Solutions may be found in the neighbourhood of the neutral curve, where the (linear) growth rate
is small. If A4 is the perturbation in Uabove the neutral curve, the growth rate is proportional to
A%, and so the variation of the amplitude can be expected to be on an O(4-%) time scale. (This
is typical of ‘inviscid’ instabilities. For instabilities of ‘viscous’ character the growth rate is
0(4). We will compare these two types of flow instabilities as we proceed.)

Formally, solutions may be found anywhere along the neutral curve, but, unless the wave-
number spectrum is quantized in some way, they are useful only near the minimum of the curve,
where U = U,. For values of U> U, (e.g. U = U] in figure 1) there is a wide band of unstable
wavenumbers. For an arbitrary initial disturbance, waves in the interior of the unstable region,
with large growth rates, would rapidly overwhelm any solutions found for waves near the neutral

curve.
58-2
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642 M. A. WEISSMAN

Thus it is in the neighbourhood of the critical point where the small-amplitude slowly-varying
nonlinear theory is most relevant. In addition, in this region one may attempt a nonlinear solution
for arbitrary initial conditions. Consider the velocity difference to be a small amount above the
critical value, say U = Uz + 4, 0 < 4 < 1, and suppose that the entire band of unstable waves are
present in the initial conditions. Then, since the width of the band in Fourier space is O(4%)
(see figure 1; the shape of the curve is parabolic), that part of the disturbance associated with the
instabilityt will appear in physical space as a wavetrain of wavenumber #., modulated in
amplitude (and perhaps phase) on a spatial scale 4-3.} Therefore, including the O(4-%) temporal
scale again, the solution for the entire packet of unstable waves near the critical point is expected
to take the form of the real part of

AX, Texpli(£dex—oct)],

where X = Atxand T = A¥t. A(X, T') is the ‘amplitude function’ (which may be complex), and
o is the (real) frequency corresponding to the critical point U = Us, £ = £..

In the nonlinear analysis there is another small parameter, €, the scale of the amplitude. The
relationship between 4 and € is determined by requiring the instability to appear at the same
order in the analysis as the nonlinear ‘self-interaction’. This yields 4 = O(e?) and thus, in terms
of the amplitude, the time and space scales of the wave-packet are O(e~'). We shall see that this
scaling leads to a nonlinear partial differential equation for the amplitude function that is of
hyperbolic type: second order in time and second order in space (a nonlinear Klein—-Gordon
equation).

For values of U < U,, all wave solutions are stable, neither growing nor decaying. The model
now supports conservative dispersive wave-trains, which have been considered by numerous
authors, e.g. Benney & Newell (1967). It has been found that for these waves, the above scaling is
not correct, and a different amplitude equation results. The temporal scale changes to O(e~2),
but the spatial scale remains O(e~*). This leads to a nonlinear parabolic equation for the ampli-
tude: first order in time and second order in space. One aim of the present work has been to
understand why this changeover occurs when going from the unstable to the stable region. To
this end, a rather general solution is sought in which amplitude modulation is allowed on both ¢
and =2 time and space scales. This results in a system of two partial differential equations for the
amplitude, equations which take different forms depending upon the point of interest in para-
meter space. The coefficients of the linear terms in these equations bear a simple relation to the
lowest order linear problem (see (2.01), (2.02)).

The derivation of the general amplitude equations, being rather tedious, is relegated to appen-
dix A; in the text we will concern ourselves mainly with the forms the equations take under
various conditions and the corresponding solutions for the amplitude function. In §2, we will find
that there are three regions of parameter space in which the equations take on different forms:
(1) in the stable region, (2) on the neutral surface but away from the minimum and (3) in the
neighbourhood of the minimum of the neutral surface, the critical point for the instability. It is
the latter region that will be of primary concern for the rest of the paper. We will find that the

1 Stable waves may also be present in the initial conditions. Although we will neglect their influence in this
study, it is possible that, regardless of their initial amplitude, they can grow because of nonlinear interactions with
the unstable waves. We return to this point in §6.

1 Note that this argument for the spatial scale does not depend on the inviscid character of the instability, but
only on the shape of the neutral curve at the minimum.
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THE KELVIN-HELMHOLTZ INSTABILITY 643

group velocity is multi-valued here and that unstable wave packets propagate with its average
value.

In §§3 and 4, special solutions are considered which depend only on time or only on space. The
uniform, time-dependent solutions are rather familiar; they have been found before by Drazin
(1970) and Nayfeh & Saric (1971, 1972) for the Kelvin—Helmholtz instability and by Pedlosky
(1970) for the baroclinic instability. However, they are briefly reviewed to provide a background
for the more general solutions which follow. In §4, we consider whether or not a ‘spatial’ insta-
bility is possible, that is, whether a steady-state wave (linear or nonlinear) can exist that is growing
only in space. We will see that the answer depends upon the density difference, the frame of
reference, and whether the nonlinear effects are stabilizing. The points raised here are related to
Briggs’s (1964) discussion of ‘absolute’ versus ‘convective’ instability (see also Bers 1975). Under
linear theory, if an instability is ‘absolute’, spatial instability is not possible. However, when
nonlinearity is included and is stabilizing, we shall find steady-state solutions that represent
spatial growth.

In the rest of the paper, we study waves that are modulated in both time and space; however,
we restrict ourselves to the case of perhaps greatest physical and mathematical interest, the one
in which linear effects are destabilizing, and nonlinear effects stabilizing. In §5, we will find, as
has Fleishman (1959) before us, that wave-like modulations, travelling without change of form,
are possible solutions to the nonlinear Klein—-Gordon equation. These can travel much faster
than the signal velocity of the linear equation. In particular, soliton-like solutions appear,
modulation envelopes which take the shape of a solitary wave (these were not studied by Fleish-
man).

These exact solutions will be seen to play an important réle in the numerical calculations of § 7.
However, before a numerical solution can be attempted, appropriate initial conditions must be
considered. Thisis accomplished in § 6, where the linear development of a localized disturbance is
determined (by use of the amplitude equation, which holds for linear as well as nonlinear waves).
We will find that the wave packet has ‘fronts’ which move with the multiple values of the group
velocity.

Section 7, ‘numerical solutions’, has three parts. In the first, localized disturbances in one
dimension are considered. We will see here that the initial conditions, even when the initial dis-
turbance is extremely small, have a decisive effect on the final solution. Whenever the initial
condition ‘contains’ the hyperbolic secant in some way, the solitary solution (which has that
shape) emerges. Next, the stability of the spatially uniform, time-dependent solution is examined.
It is found that spatial modulation is a destabilizing influence. And finally two-dimensional
localized solutions are calculated with the simplifying assumption of axisymmetry. Again the
initial conditions are found to dramatically affect the form of the solution.

I have included in appendix B a brief discussion of sub-harmonic resonance in the Kelvin—-
Helmbholtz instability. As Nayfeh & Saric (1972) point out, this occurs at precisely the same
wavenumber as for ordinary gravity-capillary waves without wind (see, for example, McGold-
rick 1970). Nayfeh & Saric consider sub-harmonic resonance in the stable region, but their
analysis does not hold for marginally unstable waves. The proper balance between 4 and ¢ is
found to be 4 = O(¢), implying that nonlinear effects are larger (for a given 4) than in the self-
interaction case. We see in appendix B that, once the general form of the operators in the ampli-
tude equations is known, itis a relatively simple task to determine the proper form of the equations
for this situation.
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644 M. A. WEISSMAN

2. THE GENERAL FORM OF THE AMPLITUDE EQUATIONS
If z = e{(x,y, t) is the elevation of the interface [¢ is a measure of the magnitude of the distur-
bance (0 < € € 1)], the perturbation expansion presented in Appendix A yields a solution for {
in the form & =0 4el® 2@ ..,
where W = A(X, Yy, Ty, X, Y5, Ty) exp [i(#x + £y — ot)] + complex conjugate,
and {® (a second-harmonic term) is given in (A 19). The expansion is not expected to be valid if

there is growth on the O(1) scales, that is, if the imaginary parts of o, — £or — £ take on positive
values. The complex amplitude function 4 is assumed to depend upon the two sets of slow variables

(Xl, Yl, Tl) = e(x, Y, t)

and (Xza Yz, TZ) = ez(x,y, t)'
As shown in appendix A, the amplitude function must then satisfy the following system of partial
differential equations: o4 4 04
—Fa.éTl+F,€“a‘X‘1'+FZ'§I71'= 0, (2‘01)
. 04 04 04\  ,,. 94 24 . 04
1 (—Fa'a'j_wz'+F;€—X'2 +F/a_y—;) +§FvaaT%_Fa/€ay'vlaXl+§F£l€a_X'§

®4 . 04 a4, .
+F{1m+§FKZm—FaZm— (A/E)FUA+NlAl 4. (2‘02)

The coefficients of the linear terms are simply the derivatives of the characteristic function,
F(o, £,4,U) = py0* +py(0 = UAP — (Zk +747),

and are givenin (A 23).1 (The definitions of py, p,, §, and ¥ are givenin (A 04); Uis the magnitude
of the (vector) velocity difference, assumed to be in the x-direction; and k = (£2+¢2)%.) The
coefficients must be evaluated at the point of interest in parameter space subject to the condition

F(o, £,¢,U) = 0. (2.03)

Solving (2.03) for o = o(£, £, U) yields the dispersion relation, (A 13).

The term (4/e?) Fy; A in (2.02) arises by replacing U by U+ 4 in the original equations and
assuming that 4 = O(e?). In the stable region, this term can be shown to yield only a small shift in
frequency or wavenumber and can be taken to be zero without loss of generality. However, for U
marginal [that is, U = Un + 4, where Un(#,?) is the neutral surface], this term will give us the
linear instability and must be retained. The nonlinear term N|A4|24 arises by self-interaction; the
coeflicient, which can be positive or negative, is given in (A 24).

Let us now apply (2.01) and (2.02) in the three regions of parameter space mentioned in the
introduction. These regions are distinguished by the vanishing or non-vanishing of the first
derivatives of F.

2.1. The stable region: F, Fg,Fy # 0

In the region of (U, £, £)-space below the neutral surface, wave packets propagate in much the

same way as dispersive waves in other conservative systems. Equation (2.01), rewritten as
04 04 04

a—ﬁ-l-o"){-éj(:l'—i‘a‘(-éﬁ =0, (2.044)

1 This fundamental form for the amplitude equations arises because the method of multiple scaling is basically
an expansion of the linear operators in the original system of equations. This is discussed further in the summary.
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THE KELVIN-HELMHOLTZ INSTABILITY 645

shows that modulations on the time scale e~ propagate without change of shape with the group
locit
e (04> 04) = = (Fu/Fyy Fo/ F,) (2.04)

However, (2.02) implies that there will be a change on the ¢~% time scale due to nonlinear self-
interaction. By using (2.04), derivatives in either 73, X; or ¥}, can be eliminated from (2.02). Let

us write 024 024 024
T ox, = ("'f ox: T %5x, ayl) ’

024 024 024 024

e = g — 2 -
and YRR ALy o AR €4

from (2.04), substitute into (2.02), and divide through by —iF,. Then the coefficients of the
second-derivative terms can be shown to be proportional to the second derivatives of o(#, ¢):
044, O g, and oy, That is, (2.02) becomes

o4 04 04 i[ 024 024 04

iV
a—TZ—I-O';g'a‘:Y—z-I-O‘{gE—E O',gga—ﬁ+20‘,g/a—*——-XlaY1+0'[/m] = F_‘a |A| 4. (2.05)

(4 has been set to zero.) The terms in X, and ¥, could now be eliminated by transforming to the
group velocity frame of reference.

This equation, in this general form, was first derived by Benney & Newell (1967). Since then it
has been found to apply to many stable non-dissipative wave systems. In particular, it has been
also found (without the Y-terms) by Nayfeh & Saric (1972) for two-dimensional waves in stable
Kelvin—Helmholtz flow. It also applies to ordinary deep-water surface waves (cf. Benney &
Roskes 1969; Chu & Mei 1970, 1971; Hasimoto & Ono 1972; Davey & Stewartson 1974). With
the instability term (i.e. i(4/e?) (Fy /F,) 4) included, equations of this form, first order in time
and second order in space (but with complex coefficients), govern ‘viscous’ instabilities (Newell
& Whitehead 1969; Stewartson & Stuart 1971). (See Lange & Newell (1974) for a recent study
of the properties of (2.05) with the instability term included.)

Note that in the present case of Kelvin—Helmholtz flow, in contrast to ordinary surface waves,
the group velocity vector (o, o) is not parallel to the wavenumber vector (#, £). This is not
simply due to advection by the mean flow. From (A 13),

(£+7x*) £/k 7 PP U242

or=p, Ut So—p UZ) " (o—p, UF)’ (2.064)
@+ Lk
and o=+ 3o —p, UA) (2.060)

The first term in (2.064) indicates a bodily advection of wave trains, but the third term is a result
of the change in effective inertia of the system due to the (perturbation) pressure difference across
the interface.

2.2. The neutral surface away from the minimum: F, = 0; Fyg, Fy # 0

Everywhere on the neutral surface, F, = 0, as expected for any inviscid instability. Without
dissipation, there must be both growing and decaying modes in the unstable region, modes with
complex conjugate values for o (assuming #real). On the neutral surface, the complex conjugate
pair coalesces; the equation F (o, #,¢,U) = 0 must yield a double root for o. This can only
happen if F, = 0 (which is readily verified in the Kelvin-Helmholtz case from (A 23a), (A 13)
and (A 14)).
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646 M. A. WEISSMAN
With F, = 0, the first derivatives in time drop out of (2.01) and (2.02) and the system becomes
second order in time: A A
o4 04\ .04 . 024 +1 o 024
(Fff ax, T )*E 03T T AT OX, T ¥ QX3
024 024 024

+F"”6X o7, + Fﬂayz F""OT oF, = (4/2) FBR A+ N™|4|24, (2.08)
where m indicates evaluation on the neutral (‘marginal®) surface. This may be compared to
‘viscous’ instabilities, for which coalescence of modes on the neutral curve does not occurt;
F, # 0, and the system retains the first-order terms. Thus the order of the amplitude equation
(after simplification) is not determined by the order of the original equations of motion, but
only by the vanishing or non-vanishing of F,. (A good example of this is Rayleigh-Bénard con-
vection, a ‘viscous’ instability. Although the original equations are second order in time, the
resulting amplitude equation is first order (Newell & Whitehead 1969).)
Leaving aside the spatial dependence for the moment (i.e. 4 = 4A(T;) only), we find

F;?,g;i AF{T}A+N“‘|A|2A (2.09)
from (2.08). This is a familiar equation from other studies of the nonlinear development of
inviscid instability (see, for example Drazin 1970; Pedlosky 1970), and it is well known that the
exact solution can be found in terms of Jacobian elliptic functions (which we review in §3). Of
primary concern is the sign of the nonlinear coefficient, for this indicates whether the nonlinearity
will be stabilizing (N < 0) or destabilizing (N > 0).

For the Kelvin-Helmholtz instability, N can take either sign (Weissman 1972; Nayfeh &
Saric 19%72). Evaluating (A 24) on the neutral curve, we have

)2 (5 a2\
Vi fine s BRLEE b
Thus, as long as k% < g/of,

then N < 0 and the nonlinear term is stabilizing. However, if
K% > g/2F (2.114)

(8+7k2/4) (272 — @)
(& +7k%)?

and (ps—p1)? > , (2.110)
N is positive and the nonlinear effects are destabilizing.] The point x? = g/27 (and its neigh-
bourhood; see appendix A) is of course excluded from the present theory. The singularity is due
to the occurrence of second-harmonic resonance (see appendix B).

The important case at the minimum, #2 = §/7, ¢ = 0, isincluded in condition (2.114). This is
returned to in the next sub-section.

T At least, I know of no case where it does. But, since coalescence per se can occur in viscous flows (see, for
example, Gallagher & Mercer 1962, 1964) perhaps the possibility should not be ruled out.

1 In the first study on nonlinear Kelvin—Helmholtz instability, Drazin (1970) found that N is always negative.
However, he only considered the two cases 7 = 0, p,/p, arbitrary (i.e. k? < g/27) and 7 arbitrary, p,/p, ~ 1
(ie. (pa—p)* < 1).
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THE KELVIN-HELMHOLTZ INSTABILITY 647

Returning now to the situation with spatial dependence, (2.07) implies that 4 cannot vary on
an ¢! length scale in the direction defined by the vector (F, F*). The variation in that direction
must occur on the €72 scale as determined by equation (2.08). Appropriate new variables could
be defined, or 9/0Y; could simply be replaced by [(F¥/F*) 0/0X;] - or vice versa—in (2.08), but
the result of either procedure is not very enlightening. Let us simplify the discussion of this case by
assuming strict two-dimensionality; that is, set 0/0Y; = £ = 0. The points under consideration
now lie on the neutral curve,

Un(%,0) = [(g/4+74) /p1pe]t.
Equation (2.07) becomes Fpo4/0X, = 0. (2.12)

Therefore, whether 4 can be dependent on X; depends upon the vanishing of F,. Evaluating F,
on the neutral curve, we find Fin = g7, (2.13)
This vanishes only at the minimum of the neutral curve where £ = (§/7)%. Hence, only there can
4 be a function of X;; elsewhere, (2.12) implies 04/0X; = 0. Away from the minimum, then, and
on the neutral curve, (2.08) gives 4 as a function of 7; and X, alone:

iF?aa; 1F;’3§7{12 LFpA+Nm (424 (2.14)
where the coefficients are evaluated with £ = 0. This equation has also been found by Watanabe
(1969) and Nayfeh & Saric (1972).

We shall not consider this case further because, as mentioned in the introduction, in this region
of parameter space, near the neutral surface but away from the minimum, solutions involving
slowly modulated wave trains are not very useful (because of the possibility of rapidly growing
waves inside the unstable region).

2.8, The critical point: F, = Fyp= Fp = 0
At the minimum of the neutral surface (U = Us, £ = £, £ = 0), all three first derivatives of
vanish. Once more, this is a general result for inviscid flow. Consider the variation of F with
respect to £ along the neutral surface, Un(%,7),

O0Un

m | pn 4 pp&Um =0, (2.15)

o4

where om(4,£) = o(#,¢,Un(£,{)). (0om/0£is well behaved but (0o /0#)mis not; see below.) Then,
since F* = 0 for all points on the neutral surface and 60U /0£ = 0 at the minimum,

d . n
S [F(om, 4,4, Un)] = F

Fy =0 at the critical point.

Similarly, Fy = 0. Moreover, since I7, vanishes everywhere on the plane £ = 0 because of the
symmetry of F, Fg = F,; = 0 also at the critical point.

With F,, Fy, and Fyall equal to zero, equation (2.01) disappears, and (2.02), the sole governing
equation for the amplitude, becomes

024 024 024
%Fwaa_jﬂ_g Fa’faTaX'*' %F[é’aXz"'%F//ayg (A/ez)FUA'I'NlAIzA (2'16)

where the subscript 1 on X, Y, and 7 has been dropped and the coefficients are evaluated at the
critical point.

59 Vol. 2g0. A.
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648 M. A. WEISSMAN

On the marginal surface away from the minimum, the components of group velocity,
0',g=——-F£/Fa, 0'[=—F{/Fa., (2.17)

are infinite and consequently do not have any physical meaning. However, at the minimum they
again take on finite values. It can be shown that

Og= [_mei(th;@_"FmrFff)é]/Fmr (218(1)
and or=+(—Fpy/F,)k (2.180)

The physical significance of the group velocity in the present context will be seen below but at
this point we note that it is multivalued. This is a consequence of the multiplicity of modes. On
the neutral surface, the frequencies of two modes coalesce, but their derivatives remain distinct.
Itis also notable that, even though the wave is travelling in the x-direction, there is a component
of group velocity in the y-direction.

The components of the group velocity can be brought into the amplitude equation. The first
three terms of (2.16) are factored,

0 0 0 0
1 —te Vet 0 —
2o (a T*”lax) (aT“ZaX)A’
provided Crteg=—2F4/F, ., ¢ ¢y =DFg/F,.

Comparison with (2.18a) shows that ¢, and ¢, are the two values of the group velocity in the x-
direction, o} and o', say. Thus, dividing through by }F,, and using (2.18), we can write (2.16)

as
0 ) 0 0 024 =
— + | | — - + o — 2
(aT+0'£aX) (aT+0';€aX)A+0'( 07 525 = GA-+ N|4]2 4, (2.19)
where G = 2(A/e?) Fy /F,,, N=2N/F,,. (2.20)

In one dimension (set 0/0Y = 0), this form of amplitude equation has been obtained by
Pedlosky (1972) for baroclinic instability (however, his nonlinear term is different because of
coupling with the mean flow). As he shows, for a linear wave (neglect the nonlinear term) that is
marginally stable (set 4 = 0), modulations of the amplitude can propagate with one of the two
values of the group velocity. Thus, the situation at the critical point merges with that in the stable
region, where modulations also propagate with the group velocity (cf. (2.04), the equation for
behaviour on the same scales as (2.19)).

Equation (2.19) also shows that linear, marginally-stable packets can propagate in the y-
direction with one of the two values of the corresponding components of group velocity. Without
the X dependence or the terms on the right hand side, (2.19) becomes

(8/0T+0} 0/0Y) (0/0T+070/0Y) A = 0

(since 0} = —o7). Thus amplitude modulations can propagate along the crests, for the wave
itself is travelling in the x-direction. The situation is now quite different from that in the stable
region where, for = 0, the component of group velocity in the y-direction vanishes and modula-
tions of stable waves do not propagate along the crests on these scales of motion. (However,
modulations on the Y] scale do affect the behaviour on the 7} time scale, as (2.05) shows.)

There is another instructive way of writing the amplitude equation. From (2.18), we can let

0% =ctw, 0F= tuwu,
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THE KELVIN-HELMHOLTZ INSTABILITY 649

where ¢c=—F_4F,, (2.21a)
wg =+ (F3g—Foe Fgg)t/Fop, (2.215)

0= +(=Fu/Fo,)}, (2.21¢)

and then (2.19) becomes

(a a)zA , 024 ,0%4

st 0ag) A-Osga— 0} 595 = GA+ N[44 (2.22)

The coefficient ¢ has two interpretations. As defined above, it is a “mean’ group velocity, the
average of the multiple values of group velocity. We shall see, in fact, that ¢ does have the role of a
group velocity in the sense that it is a convection velocity for unstable wave packets (wzand wy
becoming spreading rates).

There is another general definition for ¢. Let

om(£¢) = (4,4, Un(£,¢))

be the frequency as evaluated on the neutral surface. Then, since F,(om, #,¢, Un(£,¢)) = 0,

-+ F5+ Fo =2 O

U5k =

after differentiation with respect to #. At the minimum 0Up, /04 = 0; therefore,
ao‘m/aK= - a';f/Fcro' =

from (2.21a). Thus ¢ is equal to a special derivative of the frequency with respect to the wave-
number, the derivative affer evaluation on the neutral surface.

For Kelvin—-Helmholtz flow, ¢ also turns out to be equal to the phase speed. By evaluating
F_yand Fypfrom (A 23),

c=p0 U,

which is the phase speed of marginal and unstable waves (see (A 13)). However, this need not be
the case for other flows, e.g. the baroclinic instability (Pedlosky 1972).

Consequently, in a frame of reference moving with this convection velocity (i.e.let X' = X —¢T;
+ wgand + wg become the components of group velocity in this ‘ preferred’ frame), theamplitude
equation reduces to its simplest from,

24,24 L0

Wé—a)gm gayg = GA'I' N,Ale, (2.23)

a nonlinear Klein-Gordon equation. In addition to the (inviscid) baroclinic instability, it has
been found to be applicable to the buckling of thin shells (Lange & Newell 1971). If the terms on
the right hand side are again set to zero, a localized initial packet at the origin would propagate
away in an ellipsoidal pattern with speeds + wg, + w,on the axes, as governed by the anisotropic
wave operator. Since wy > g (see the next paragraph), the major axis would liein the y-direction.

These results concerning the convection and group velocities were obtained by simply using
the fact that the coefficients of the amplitude equation are the various derivatives of the charac-
teristic function. Thus these results are quite general, for the form of equations (2.01) and (2.02)
can be shown to apply to many flows. However, returning to the Kelvin-Helmholtz model, we

59-2
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650 M. A. WEISSMAN

may evaluate the coeflicients in (2.23), but first let us choose velocity and length scales for non-
dimensionalization given in (A 07). For this choice, § = ¥ = 1. Then

£e=1, (c=0, U= (2/pips)%
and, from (A 23) and (2.21),
c=p U= (201/p2)}, wg=1, wr=42,

F

| (2.24)
7= 2@mp)i,

A
G=25

. . N=2N/Fao'=%[16(p2'"pl)2_5]>
at the critical point.
Thus, the nonlinear coefficient can be positive or negative. If the density difference is large

enough, i.e. if (pa—p1) > ($5)F = 0.559, (2.25q)

the nonlinear term is destabilizing. By using the definitions of p; and p,, (A 044), this condition can
be written in terms of the density ratio:

p1/ps < 0.283  for nonlinear destabilization. (2.255)

The change in sign of the nonlinear coefficient is due to the influence of the forced second-
harmonic component of the solution. The last term in the coefficient resulted from products
involving the second harmonic, whose amplitude is proportional to the density difference (cf.
(A 19) with y evaluated at the critical point).

3. UNIFORM, TIME-DEPENDENT WAVE TRAINS

From now on we will study only the situation at the critical point, where (2.16), (2.19), (2.22)
or (2.23) govern the amplitude development. When the amplitude is uniform, varying only in

time, they reduce to d24/dT? = GA + N|A|24, (3.01)

Although this equation and its solutions are familiar (Pedlosky 1970; Drazin 1970; Nayfeh &
Saric 1972). Solutions of (3.01) will be needed later in order to form exact solutions of (2.23).
Therefore, let us briefly review the various solutions of (3.01), allowing for arbitrary values of G
and N.

It is important to keep in mind here (and indeed throughout the rest of the paper) that ampli-
tude equations such as (3.01) hold for linear waves as well as nonlinear ones. When the nonlinear
term on the right hand side is negligible compared to the linear one, that is, when

A2 < A2 = |G/N| or a®<a® = |AFy/N|,
where a=ed,

we recover the linear problem for small growth rate.

The amplitude function 4 is complex in general and thus contains phase information as well
as giving the actual amplitude of the wave. If 4 = Rel, where R is the modulus and 6 the phase
(both real), then substitution into (3.01) and separation into real and imaginary parts yield

d6/dT = A/R, (3.02)
and d2R/dT? = X*/R®+ GR + NR®, (3.03)
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THE KELVIN-HELMHOLTZ INSTABILITY 651

where A is a constant determined by the initial conditions, i.e.
A= R(0)2d0/dT(0).
For the sake of brevity, we will only consider the initial condition
d6/dT =0 at T=0. (3.04)

This gives A = 0 and, hence, 6 = constant for R # 0. With A = 0, (3.03) allows solutions which
change sign (note this is not the case for A # 0), and we may return to equation (3.01) under the
assumption that 4 is purely real. The opposite case, d0/d T (0) # 0, cannot be ruled out as a
possible initial condition for a uniformwave train (its physical meaning is that the initial frequency
is slightly shifted from that given by the dispersion relation); however, we shall find in § 6 that the
assumption that 4 is real is the correct one for a localized, impulsive disturbance.

\\ (W//

Z—__

i

E_%

-
F1cure 2. Phase plane trajectories for d24/dT? = GA+ NA®. (A on the horizontal axis, d4/dT on the vertical
axis.) (@) G<K 0, N< 0. ())G>0,N<O0.(¢c)G<O0,N>0.(d)G>0,N>0.

For 4 real, solutions to (3.01) may be found in terms of Jacobian elliptic functions (Milne—
Thomson 1950). Bounded or unbounded solutions will result, depending on the signs of G and N.
The situation is summarized in figure 2, where the phase-plane trajectories are drawn for the
various sign combinations. These curves were obtained by plotting contours of the first integral

of (3.01): E = (d4/dT)*+¢(4) = constant, (3.05)
where H(A) = — G4~} NA*. (3.06)

The function ¢(A4) can be thought of as a ‘background potential’; its gradient is a ‘restoring
force’. Thus, figure 3, in which ¢(4) is sketched, provides a useful visualization of the dynamics,
both for uniform wave trains and for the later discussion of spatial variation.
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652 M. A. WEISSMAN

(@) G < 0, N < 0. G negative corresponds to 4 negative; that is, the shear difference is slightly
below the critical value. Since the nonlinear term is also stabilizing, all solutions are bounded,
as the phase plane shows, and they take the form of the cn function.

(6) G > 0, N < 0. The amplitude in this case is said to ‘equilibrate’. The equation is linearly
unstable but the nonlinear term is stabilizing, yielding bounded oscillating solutions of two
different types. Inside the separatrix, near the stable equilibrium points (4 = + 4eq, d4/dT = 0)
the solutions do not change sign and are given in terms of the dn function. Outside the separatrix,
on the trajectories where 4 does change sign, the solutions have the form of the cn function. On the
separatrix, the solution is the hyperbolic secant.

NP
\L/ N\

- A

(c) B(A) (d) AP

% N .

Ficure 3. The ‘background potential’, ¢(4) = —GA?—3NA% (a) G < 0, N< 0. (b)) G > 0, N< 0.
()G <0, N>0.(d)G>0,N>0.

(¢) G < 0, N> 0. This case yields ‘nonlinear’ or ‘subcritical® instability. If the amplitude is
small enough, the linear theory correctly predicts stability, as is shown by the closed trajectories
near the origin of the phase plane. The solutions there are given in terms of the sn function (which
becomes the hyperbolic tangent on the separatrix). However, if, for example, d4/d 7 = 0 and
|A| > Aeq initially, the flow will be unstable (cf. figure 3a). The solutions (e.g. the nc function)
are unbounded but remain periodic; they become infinite in a finite amount of time.} (The
amount of subcritical destabilization is not particularly large. For a ‘typical” wave amplitude of
0.3 and N equal to its maximum value, 5.5, the critical velocity difference is reduced by about
10 %.)

(d) G > 0, N> 0. There are no bounded solutions in this case. The nonlinear term, because it
is destabilizing, cannot equilibrate the linear instability. The growth is ‘ super-exponential”’ in the
sense that the growth rate is always greater than the linear growth rate. From (3.05), for a
trajectory passing near the origin (£ = 0), the growth rate is

1d4 1N
AdT|™ G%( §’G‘A2)

Of course, with unbounded solutions where N > 0, the method of analysis used here would
soon become invalid. When the unscaled amplitude a = €4, becomes O(1), that is, when 4 =
0(¢™1), the higher-order termsin the original expansions can no longer be neglected. The calcula-
tion could be taken to higher order to determine the motion as a function of slower time scales,
but this dependence cannot prevent the solution becoming infinite on the ¢! time scale. Only a

1 Viscous flows behave similarly, cf. Stuart (1960).
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THE KELVIN-HELMHOLTZ INSTABILITY 653

fully nonlinear theory can determine whether the nonlinear instability in cases (¢) and (d) will
eventually equilibrate.

When the amplitude equilibrates on the e~ time scale, i.e. when the expansion remains valid on
this time scale, then it would be useful to calculate the longer scale variations by going to higher
order. The oscillations we have found on the ¢~ scale might be modulating, or even growing, on
the 2 scale.

One case where it is actually necessary to go to higher order iswhen N becomes small or vanishes,
as it can do in the Kelvin—Helmholtz model. If N = O(¢), some rescaling is necessary, but an
equation of the same form as (3.01) would emerge. However, if N = O(€?), the cubic term would
arise at fifth order, where another self-interaction secularity appears, a term proportional to 4°.
The governing amplitude equation would be

d24/d T3 = GA+ NA® + N, 45, (3.07)

where T, = ¢* and 4 is assumed to be O(e?). Now the sign of Ny (assumed O(1)) would determine
whether unbounded solutions are possible. (Of course this argument could be extended to include
spatial dependence.)

4. STEADY-STATE, SPACE-DEPENDENT WAVE TRAINS
With 0/0T = 0/0Y = 0, equation (2.22) becomes
(2 —w}) d24/d X% = GA + NA?3, (4.01)

again by taking 4 to be real. The question of interest here is the occurrence of a steady-state (on
the long time) spatially-growing wave driven by a steady source; can there be ‘spatial’ insta-
bility as opposed to the ‘temporal’ type of the previous section? This question is not easily
answered, for a stability analysis is essentially an initial-value problem and might not have a
steady-state solution. A solution of (4.01) which yields spatial growth may be unstable itself when
time dependence is taken into account. However, (4.01) does tell us which solutions are possible
if a steady state is achieved.

If we consider first the linear case (N = 0) with G > 0, equation (4.01) shows that exponential
growth with X occurs if

lel > |wg]. (4.02)
In the stable case (G < 0) it would appear that exponential growth could also occur if |¢| < |wg].
However, by considering the initial value problem, Briggs (1964, ch. 2) has shown that temporal
instability must be possible in order to have spatial instability. (The proper solution in this case
would be the exponentially decaying one.) Thus (4.02) and G' > 0 are necessary conditions for
steady-state linear spatial instability. (We shall find that (4.02) is not necessary in the nonlinear
case.)

Condition (4.02) can be understood physically by considering a steady-state disturbance (at
X = 0, say) to be a continuous series of impulses. We will find later (in §6) that the linear (time-
dependent) response to a single impulse disturbance is a modulation envelope that is growing
exponentially (approximately) between two ‘fronts’ which propagate with speeds ¢+ wy and
¢ —wg. The packet as a whole is convected with speed ¢ while it spreads from its centre with speed wg.
Therefore, to attain a steady state, each packet produced by an impulse must be convected
‘downstream’ faster than it spreads, or else it will continue to grow near the origin. Both fronts
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654 M. A. WEISSMAN

must propagate in the same direction; hence, (¢ +wy) (¢—wy) > 0or¢® > w%. (This explanation
also shows why G must be positive for spatial instability. For G negative, the response to a single
impulse would be a stable dispersing wave train.) The case when a steady-state can be achieved
has been termed ‘convective’ instability; the opposite case, ‘absolute’ instability (Briggs 1964;
Bers 1975).

The value of the ‘convective’ speed ¢ depends on the frame of reference, but the value of wy
does not. In the original frame, where the mean velocity of the lower layer is zero, ¢ = (2p,/p,)*
and wg = 1 (see (2.24)). Condition (4.02) becomes, in terms of the density ratio,

p/ps > 3 (4.03)

Thus for an air-water system (p,/p, & 0.0012) with the water at rest, one would not expect to
see steady-state spatially-growing (linear) waves resulting from Kelvin—Helmholtz instability.
The same would hold for Thorpe’s (1969) experimental set-up. Even though his fluids had
P1/Ps = 1, in his frame of reference ¢ = 0, so (4.02) would not be satisfied.

If a steady-state spatial instability is attained, the spatial growth rate, us say, may be compared
with the temporal growth rate, #y = G*. From the linear part of (4.01), 42 = G/(¢® — w%); hence,

s = (=R, (4.040)
or, since 0} = c+wy, 07 = c—wy, wifps = (0Fog)h. (4.045)

Therefore, as is the case with ‘viscous’ instabilities, the temporal and spatial growth rates are
related by the group velocity, but in a very different way. For ‘viscous’ instabilities (i.e. when
F_and Fyare not zero), this ratio is

ptfits = g,

the (single-valued) group velocity itself (Gaster 1962). Equation (4.045) of course reflects the
multi-valued nature of the group velocity, which is a result of the coalescence of modes in the
linear problem. To complete the analogy to the ‘viscous’ case, (4.045) can also be found by the
method used by Gaster, an expansion of the characteristic function for small growth rates (with
F,=F;=0;F,, Fg # 0). This yields (4.045) in the form

/'“///’S = (F;é%’/ch')%' (4‘046)

Inclusion of the nonlinear term changes the situation somewhat. There are many solutions
possible; they fit into the four categories as discussed in § 3. When ¢ > w%, the spatial variable is
‘time-like’ and the solutions are exactly the same as the temporal ones with 7 replaced by
X/(c®— w%)}. For small initial amplitudes (at X = 0), the solutions for G > 0 will grow exponen-
tially near the origin and then either equilibrate (N < 0) or continue to grow (N > 0).

However, when ¢® < %, it appears that the situations giving stability and instability have been
reversed. For example, when G > 0 and N > 0 (complete temporal instability), (4.01) gives a
solution that remains bounded (cf. case (i) of the temporal example where G < 0 and N < 0).
Although this is a possible steady-state solution, we expect it to be unstable. The ‘restoring force’
(cf. figure 3d) is always destabilizing; if perturbed by a random disturbance, the solution of the
full equation (i.e. with time dependence) must tend to large values.

Thus all the solutions of the nonlinear equation, (4.01), with ¢ < w%, are not expected to be
relevant, but there is one case at least when they are. When G > 0, N < 0, solutions of the form

A = Aeqtanh (a(|X| - X,)) (4.05)
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THE KELVIN-HELMHOLTZ INSTABILITY 655

are possible (see (5.06); the shift in origin is a convenient way of allowing arbitrary amplitude
(lessthan Aeq) at X = 0). This solution allows a specified amplitude at X = 0 (i.e. a fixed source),
and, as X — oo, approaches the equilibrium solution 4eq = |G/ N|%, which can be shown to be
stable (see §7.2). Thus (4.05) is expected to be a stable spatially-growing nonlinear steady-state
solution.t

Solutions of the form (4.05) resolve a paradox raised (implicitly) in the earlier part of this
section. It was established that if |¢| < |wg|, steady spatially-growing (linear) waves are not
possible even if G > 0. But what does happen, especially in the case of G > 0? The instability must
still occur even if 4 is held constant at X = 0. The linear solution (e.g. to an initial value problem)
would simply predict that the amplitude would continue to grow everywhere except at X = 0.

The same would hold for a nonlinear solution having N > 0. However, if the nonlinear effects
were stabilizing (N < 0), the solution would be expected to equilibriate while satisfying the
boundary condition 4 = constant at X = 0, as in (4.05). Thus there would be steady spatial
growth near the origin, where the amplitude could be specified to be very small and where,
therefore, the linear equation might be expected to hold: the linear equation which indicates
that a steady solution is not possible! The resolution is that the linear equation does not apply at
all. Since (4.01) is a second-order equation, both the unknown function and its slope must be
smallin order to linearize. Although the amplitude could be chosen to be very much less than 4eq,
its derivative would be O(4eq), assuming (4.05) is the steady-state solution. This is too large to
linearize but of course it is within our overall scaling scheme. Note that in this essentially nonlinear
solution, the growth near the origin is linear with X.

The same equation (4.01) appears in the next section where nonlinear solutions of permanent
form, X and 7 dependent, are sought. The case G > 0, N < 0 is discussed further there.

5. NONLINEAR ENVELOPES OF PERMANENT FORM
Let us consider wave trains with modulations in both time and space (the x-direction only; the
two-dimensional case is returned to in § 7). Equation (2.23) becomes
024,024

m—w{—a—X—é = GA + A_TA3’ (5.01)

where 4 is again taken to be real and the prime on X has been dropped (X is now in the frame of
reference moving with speed ¢). This equation is very similar to the equation found by Pedlosky
(19772) for the baroclinic instability (the difference is in the nonlinear term). Following his lead,
we look for travelling solutions of permanent form.} Let

A = A(X—— VT);
then (5.01) becomes (V2—w%) d24/dy® = GA+ NA3, (5.02)

where y = X — VT. Note that (4.01), considered in the previous section, is a special case of (5.02):
the one where V = —¢.

+ This was confirmed to a certain extent by a numerical experiment which used the method described in §7.
At T = 0 the amplitude was zero everywhere except at X = 0, where it was held constant (and small) as time
proceeded. Since there was no damping, a steady state was not achieved; however the solution for long time did
appear to be oscillating about a solution of the form (4.05).

1 Fleishman (1959) has also considered solutions of permanent form of (5.01). However, he did not discuss a
solution of interest in the present context: the solitary ‘sech’ packet.

6o Vol. 2go. A.
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Many different solutions are possible depending on the signs of (V?—w%), G, and N. They fall
into four groups as discussed in § 3. However, as discussed in § 4, not all are expected to be relevant,
because they may be unstable. Let us restrict consideration here to the case that is perhaps the
most interesting physically and mathematically, the case where the linear instability is equili-
brated by nonlinear effects.

With G > 0, N < 0, (5.02) is normalized by taking V' = V/wy, X' = (Gt/wy) X, T' = G}T,
X = (Gt/wg) x, and A’ = (— N/G)}A. It becomes

(V2—1)d24/dy* = A— 43, (5.03)
where we drop the primes.

For V2 < 1 the situation is like that of figure 3¢, the phase plane for the uniform case where
G < 0, N > 0. The bounded solutions can be given in terms of the sn and tanh functions. For the
sn function (a periodic function),

A = Aysnfoy|m} = Aysn{a(X—VT)|m}, (5.04)

(using the notation of Milne-Thomson 1950; m is the ‘ parameter’) provided
V2=1-(2-A43) /22 (5.05q)
m = A3/(2 - 43), (5.055)

and 43 < 1. Thus the shape (a function of m) depends only on the maximum amplitude 4,; the
speed depends upon 4, and the scale of the oscillation, 1/x. As the scale decreases, the speed
increases but it is always less than 1, the value of the group velocity, v, in the normalized coordi-
nates. As 4,— 1, m—> 1, and the solution becomes

A = tanh[a(X-VT)], (5.06)
where Vi=1-1/2a2 (5.07)
This solution goes from an equilibrium solution of 4 = — 1 to an equilibrium of + 1, representing

a single change of phase of 180° that propagates with the speed V. As the ‘sharpness’ of the
change increases, i.e. 1 /e — 0, the speed increases to the limit of unity. (‘This limit cannot actually
be reached without violating our scaling assumptions.)

For V2 > 1, solutions are found in terms of the dn, cn and sech functions; the phase plane is
given in figure 24. The dn solution is

A= Aydn[a(X~VT)|m], (5.08)
where V2 =1+ 43/202, (5.094)
m = 2(1—1/43). (5.095)

In this case, the speed is always greater than the group velocity and the larger the scale, 1/a, the
faster the modulation propagates. As 4y /2, m— 1 and the dn function becomes the hyperbolic

secant: A = 2isech [a(X=VT)], (5.10)
where Ve = 1+1/a2 (5.11)

Pedlosky found a similar ‘solitary packet’ but the speed depended upon the amplitude. Here, the
amplitude must be ,/2 and the speed depends only on 1 /«, the width of the packet. The wider the
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packet, the faster it goes; as the packet becomes narrower, the speed approaches the lower limit
of 1. For A, > /2, the third type of solution is

A=Ayen[a(X—VT)|m], (5.12)
where V2 =1+ (43—1)/a? (5.13q)
m = A3/[2(43—-1)]. (5.130)

We will see in §7 that these solutions that propagate faster than the group velocity play an
important part in the development of localized disturbances, particularly when the initial con-
dition is a hyperbolic secant. We will also find that the solitary packet is unstable because any
small disturbance in its tails’ can grow.

6. THE LINEAR DEVELOPMENT OF AN INITIAL IMPULSE

Again in this section, we consider one-dimensional modulation, i.e. equation (5.01). In order
to solve this equation, appropriate initial conditions must be specified. The case of a small,
localized disturbance is of special interest.

There are two approaches to the question of initial conditions for 4. In one, the disturbance
is allowed to develop under linear theory for a long period if time; the asymptotic long-time
solution is then taken as the starting point for the nonlinear solution. For example, for an
‘infinitesimal’ localized disturbance of plane Poiseuille flow, Stewartson & Stuart (1971) find the
asymptotic solution to be a Gaussian packet centred on the critical wavenumber and propagating
with the group velocity. They find the modulation of the critical mode to be of the form

a =%exp{At-—(x;)2}, (6.01)

to lowest order, for ¢ > 1 and (x'/f) € 1, where a is the unscaled amplitude (= e4), € is the
characteristic amplitude of the initial disturbance, and " is the x-coordinate in a frame of
reference moving with the group velocity. 4 is the same as we have been using, the perturbation
of the stability parameter (Reynolds number in their case) above the critical value. (Note that
the growth rate is proportional to 4, this being a ‘viscous’ type of instability.) For 4 very small,
there is region in time, ¢ > 1, 4¢ € 1, in which they ‘match’ this asymptotic linear solution to the
solution of the nonlinear amplitude equation for 7 <€ 1, 7 = A4¢ being the long-time variable in
their case. This amounts to letting (6.01) — evaluated at some ¢ = £, — be the initial condition for
the amplitude equation.

In using this approach, one must be careful as to what the amplitude actually is at (and before)
the time of the matching, for whether the linear solution is still a good representation depends
upon its amplitude, not upon how long it has developed. We have seen that there is a parameter
available to determine when nonlinear effects can be neglected. This parameter is

Gt FyAp

N N

Aeq = N

y Or Q@eq= )
in terms of the unscaled amplitude. If a(x,¢) < aeq at the time of the ‘matching’ then the linear
solution will still be valid.

The other approach is more straight forward. Equation (5.01) describes the evolution of the
packet of unstable waves centred on £ whether the motion is linear or nonlinear. To find 4(X, 0),
60-2
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658 M. A. WEISSMAN

the amplitude of this packet at T = ¢ = 0, we need only to transform to physical space that portion
of the initial spectrum corresponding to these waves. Suppose the initial disturbance of the inter-

face is given by ©
¢’ (x, 0) =f z(£) e¥ed£+c.c.,
0

where {’ = e{ is the unscaled elevation and c.c. means the complex conjugate of all proceeding
terms, and suppose the unstable waves lie in the band #; < # < #,. Then the contribution to the
initial elevation from the band of unstable waves is

£
Sun(x,0) = f 2(£) e df+c.c.
£
= a(x, 0) eie® 1 c.c.,
where a(x, 0), the initial modulation of the critical mode, is simply
bty »
a(x, 0) =f Z2(£o+ £") ez d g, (6.02)

Aty
letting #" = £— £e.

Near the minimum, the neutral curve is given by
Un(#,0) = U+ 302U [0£2|c (£~ £c)?,
to lowest order in (#—#£), or, since it can be shown in general that

0*Un _Fg»{—Fa-a'Fé’{_Fu-a-w%’

%\, F F, = Fy

(by differentiating F}* + F2 0Un /0£ = 0 (cf. (2.15)) with respect to £, evaluating at the critical
point, and making use of (2.215)),

(6= £0)? = (2 FF fi)z) (Un—Uy).
Hence, for a given 4 = Up —U: > 0, the band of unstable waves lies between
4 = ,fc_(zﬁifij%)% and 4, = zc+(2%§—%)*.
Ifwelet £' = £— £ = ¢K and G = 2F; A/F, 3¢, (6.02) becomes
a(X,0) = ¢ f +§z(;€c +6K) eKX dK. (6.03)

For example, consider the impulse

&' (x,0) = 2mzc0(x) = chm esdf+c.c.,
0

where §(x) is the delta function and z. is a measure of the strength of the disturbance; (6.03)

becomes + O . 3
a(X,0) = ez KX dK = 2¢z, m_n_(@_@' (6.04)
_&t X

(The same result would follow if z were constant, or nearly constant, only in the neighbourhood
of £..) We note that a(X, 0) is real, supporting our assumption of real 4 in (5.01). Furthermore,
note thatif z, = O(1), the amplitude is already large enough for nonlinear effects to be important
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(ie.if ze = O(1), eze = O(]|4|}) = O(aeq)). To get linear development for a period of time, one
must choose z¢ < 1.

This second approach illustrates the defect in the theory, mentioned in the introduction and
worth repeating here: we simply ignore the stable waves that are also present in the initial con-
dition. In a linear problem, they would certainly be negligible compared to the unstable modes,
but through nonlinear interactions, these waves can affect the nonlinear development of the
unstable packet. This is not a serious handicap in Stewartson & Stuart’s viscous example because
the stable modes are decaying on the O(1) time scale. Any nonlinear exchange of energy on a
longer time scale can not prevent their eventual disappearance. However, in a completelyinviscid
model such as ours, the stable waves are neutral on the O(1) time scale, neither growing nor
decaying. They are always present and, if they satisfy the resonance conditions (see, for example,
McGoldrick 1970), are able to partake in an interaction with the unstable modes.

Let us now consider the linear development of the unstable packet. By assuming 4 < deq,
(5.01) becomes the linear, but unstable (for G > 0), Klein—Gordon equation,

024 024
a7 e = G4
or, ifwelet 77 = G* Tand X’ = GX/wg = G1X and then drop the primes, we have
24 %4

in normalized form. For the delta function (a ‘typical’ localized disturbance), the initial con-
ditions on 4 are taken as, cf. (6.04),
,sinX 04

A(X, 0) = 220—1?—-, W.,(X, O) = 0,

when we use the new scaling, where z, = Gz, € Aeq. For boundary conditions we assume
AX, T)>0 as |X|->oc0.

To solve this it has been found necessary to separate the solution into two parts, 4 = 4, + 4,,
and to write the initial condition as

1
A(X,0) = 2, f KX AK 4 c.c. = A,(X, 0) + 44(X, 0),
0

where 4,(X,0) = 2. f ® KX AK tc.c. = 2z, 8(X),
0

Ay(X,0) = —z, f " KX 4K 4 c.c.
1

For the second part of this initial condition, a formal solution can be found by using Fourier
transforms:

AX, T) = 2 f ® cos[Z(K) T] XX dK +c.c.,
1

where Z(K) = (K2-1)4.

Since K2 > 1in this integral, it forms a stable part of the solution and, after a period of time, will
be negligible compared with the other part, which is growing due to the instability. The neglect
of this part of the solution is consistent with the neglect of the stable waves that were present in the
initial condition on .
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4, is found by using a Laplace transform; let

(X, p) = f ® A,(X, T) e dT.
0
Then, from (6.05), a(X, p) must satisfy

% /0X2— (p2—1)a = — 2z pd(X),
with a(X, p) -0 as | X| - oc0.

The solution is

- cl’) exp [~ | X|(p*— 1)}] = 2l pp(X, p),

if we take Re{p} > 1 to ensure that Re{($®—1)%} > 0. From a table of Laplace transforms (see,
for example, Abramowitz & Stegun 1964, p. 1027), the inverse of

PE.D) = = ! Grmmel- X (= 1)1

is B(X, T) = L[(T* - X*)} U(T-|X]),

where ], is the zero-order modified Bessel function of the first kind and U s the unit step function.

Therefore, A(X,T) = nz,0B(X, T)/0T
= nz, I,(S) 8(T—|X|)
, T
Tz T X 1 L(S) U(T - | X]), (6.06)
where §=(T*- X3,

and I, is the first-order modified Bessel function. Thus two ‘fronts’ propagate away at speeds
+ 1, the (normalized) values of the group velocity of the unstable packet. Preceding the fronts,
there is no disturbance (except for the stable part that we have neglected). For a point behind the
front moving along with some constant velocity, say X = VT where V < 1, the growth becomes
exponential after a period of time because, for large § = T(1—1V2)3%,

L(S) = [1+0(S-)]

&S

J(2nS)

(cf. Abramowitz & Stegun 1964, p. 377). Surrounding the origin, where X2 < T2,
S~ T(1-3X2/T?);

therefore, A=z, (2—1t7,)§exp (T—;—Y;) , (6.07)
for T> 1and T?%> X2

This long-timc approximation is the same form as that obtained by Stewartson & Stuart
(1971), cf. (6.01), but it is not as useful. In both cases it is necessary that ¥/t < 1, in suitable
unscaled variables. In the scaling appropriate to their ‘viscous’ problem, i.e. X = ex, T = €%,
this condition becomes €X/T < 1, and thus is satisfied even when X, 7" = O(1) (as pointed out
by Hocking, Stewartson & Stuart 1972). However, in our case, X = ex and T = et and the
approximation (6.07) breaks down for X, 7"= O(1). It is only valid near the origin; nevertheless,
this is where the amplitude is largest, and thus (6.07) represents the most important part of the
solution, the part that will be first influenced by nonlinearity.
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7. NUMERICAL SOLUTIONS OF THE AMPLITUDE EQUATION

For the most part, linearity unstable, but equilibrating, solutions were studied. That is, G was
taken to be positive and N, negative. The equation used was (5.01); normalized, asin (5.03), itis
024 024
372 A% =A- 42 (7.01)
Small localized packets were allowed to develop, at first growing due to the instability and then
equilibrating due to nonlinearity. The results are presented in § 7.1. Use of (7.01) also enabled an
investigation of the stability of uniform solutions to spatial modulation, in the manner shown in
§7.2. Two-dimensional, equilibrating packets were studied by using equation (2.23) and assuming
axial symmetry; their development is discussed in §7.3.
A few words about the numerical method: It was found necessary to use finite-difference
equations with truncation errors O(AT*) and O(AX*), where A T'is the time step and AX the grid
spacing. That is, the second derivative in X was calculated from

od
0X2

K 1 .
;= Ta(Axyel ~ Afve 1047 — 3047 + 1647, — A, (7.02)

where 7 indicates the time step and j the grid point. By using this representation, (7.01) (or the
appropriate equation for the two-dimensional case, see below) gave the value of the second
derivative in T, 024

| = 92—42 "y 43 (7.03)
0712);  0X?);
The time-stepping was then accomplished by using
n+1 _ n_ An—1 (AT)2 _a_24n+1 9?_4 n _afé n—1
AFT = 247 - A7+ 12 |97%, +106T2,~+6T2j ) (7.04)

which is also a fourth-order approximation. To handle the implicit nature of this equation, a one-
step predictor-corrector method was used. The first approximation to 47! was taken as

APt = 247 — A1 4 (AT)2024 /0T?|}.
This was used in (7.03) (with n replaced by n + 1) to obtain a first approximation to 024 /0 T2|}+1,
which, in turn, was used in (7.04) to calculate the ‘ corrected’ value of A}+1. Finally 024 /0T?|}+!
was calculated again to prepare for the next time step. (One cycle was found to be sufficient.)

Usually, AT and AX were taken to be equal and of the value 0.025, 0.05, or 0.1. The resulting
solution was graphically displayed on microfilm, making its study much easier.

7.1. One-dimensional solutions

The first initial condition tried was
A(X,0) = 4 sin X

oy 4, = constant, (7.05)

which is the initial amplitude of the unstable packet when the initial spectrum (for §) is uniform
(or nearly uniform); cf. (6.04). However, this decays rather slowly with X and caused some prob-
lems at the boundaries. The alternative approach was then used, taking the distribution obtained

1 These data and a 16 mm film of a few of the cases studied are available from the author.
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from the long-time asymptotic approximation to the linear solution. This is a Gaussian packet,
cf. equation (6.07), A(X,0) = A,exp (—a2X?), (7.06)
where o is a scaling factor. It was found to give similar solutions as sin X /X, without causing dis-
turbances at the far boundaries. The initial condition on the time derivative was taken to be

%—,(X, 0) =0, (7.07a)

and symmetry boundary conditions were used, enabling the calculation to be carried out for
X > 0 only. This is equivalent to specifying

04 04
o (0 T) =25 (X0 T) = 0, (7.070)

where X7, is the far boundary.

40

20

Sl ;
A
\

o 4

0 20 40 . 60 80 100

Ficure 4. Development of a Gaussian packet; 4, = 0.01, @ = 0.25. (The solution is symmetric about X = 0.)

The result of the calculation for a typical case, 4, = 0.01 and & = 0.25, is shown in figure 4 for
selected values of 7. At the origin, the amplitude quickly reaches the equilibrium value, 4 = 1,
about which it oscillates. The packet starts spreading with a speed greater than unity, but as the
‘front’ steepens, it slows down and approaches a speed of 1. Undulations are continually trans-
mitted toward the front, propagating much faster than 1. This causes a concentration of peaks
near the front; as the undulations crowd together, they grow in peak-to-trough amplitude,
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steepen, and slow down, reflecting the behaviour of the exact nonlinear solutions. In fact, the
waveform behind the front resembles a slowly-varying dn function, the solution for ¥V > 1.
Eventually, they pack so closely together and become so steep that the calculation is no longer
accurate.

1 1 1 | 1 ! 1 1 1 ! 1 1 1 1 ! 1 1 1

0 20 40 60 80 100 0 20 40 60 80 100

Ficure 5. X—T trajectories for two Gaussian packets; contours of 4 = 0.01 (marked) and 4 = 1.0. The shaded
area indicates the peaks. (There is symmetry about X = 0.) (a) 49 = 0.01, & = 0.25. (b) 4, = 0.01, ¢ = 0.5.

(a) T T T T T T T T T

1.5} .

A
1.0f

0.5¢ , .

0 20 40 60 80 100

F1cure 6. The amplitude at the centre of the packet (X = 0) against time. (¢) Gaussian initial packet; 4, = 0.01,
a = 0.25. (b) ‘Sech’ initial packet; 4, = 0.01, & = 0.25.

Other views of the solution are offered in figure 64, where the amplitude at X = 0 is plotted
against time (the period and amplitude of the oscillation around 4 = 1 slowly decrease), and in
figure 5a, which is an X-7 contour plot of the function A(X, 7T'). The line marked 0.01 is the
contour line for 4 = 0.01 and indicates the front of the disturbance. The other lines are all
contours for 4 = 1.0; thus the shaded area corresponds to the trajectory of a peak (4 > 1.0) and
the speed can be easily determined as the inverse of the slope of a trajectory. In the upper right-
hand corner, the wave train has reflected from the far boundary.

61 Vol. 2g0. A.
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664 M. A. WEISSMAN

Other values of 4, (0.1, 1.0, /2, 2, 2,/2) and «(0.5, 1.0) were tried and the same type of wave
train evolved (unless 4, was large (above 2), in which case a portion of the solution would be
negative). One such case is summarized in figure 55: 4, = 0.01, 2 = 0.5. Being a narrower packet
to begin with, it steepens up faster and consequently propagates more slowly than the & = 0.25
example. However, the oscillation at the origin is practically the same, with a period of about 5.

| ] |

|
60 80 100
Ficure 7. Development of a ‘sech’ packet; 4, = 0.01, o = 0.5.

A radically different solution developed when the initial condition for 4 was
A(X,0) = 4ysech (xX), (7.08)
the other conditions remaining the same. This distribution was tried to test the relation, if any, to
A(X, T) = 2tsech[a(X -V T)], (7.09)
where 72 = 1+ 1 /a2 It was found that (7.08) does give rise to (7.09) for all the values of 4 (0.01,
1.0, 4/2, 24/2) and « (0.25, 0.5, 1.0) that were used. As shown in figure 7 for 4; = 0.01 anda = 0.5,

the initial development is very much like the Gaussian, but at T = 15, a solitary packet starts to
form. Fully developed by 7" = 25, it moves away from the rest of the wave train, which resembles

the exact solution
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the solution for the Gaussian. The amplitude of this solitary packet is always /2 and its width and
speed always correspond to the a chosen for the initial condition (within the accuracy of measur-
ing these quantities from the graphical display). Figure 6 » shows that the solution at X = 0isvery
similar to that for the Gaussian.

The separation of the solitary packet can also be seen in the X—7 trajectories of figure 8, in
which the solutions for the three values of @ are compared in parts (a), (4), and (¢). The speed of
the packet decreases asa increases, in agreement with the exact solution. We also see in figure 8 the
development of another solitary packet behind the first one. Unfortunately we can not be confi-
dent of this result, for it was found that the solution behind the solitary packet depends upon the
accuracy of the numerical calculation. This is demonstrated in figure 84, which is the same case
asin figure 85 but the time step and grid size have been decreased from AT = 0.1to AT = 0.025

=

Ficure 8. X—T trajectories for three ‘sech’ packets; contours of 4 = 0.01 (marked) and 4 = 1.0. The shaded area
indicates the peaks. (a) 4, = 0.01, @ = 0.25. (b)) 4, = 0.01, & = 0.5, AX = 0.1, AT = 0.1. (¢) 4, = 0.01,
a = 1.0. (d) 4y = 0.01, « = 0.5, AX = 0.05, AT = 0.025.

61-2
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and from AX = 0.1 to AX = 0.05. A second solitary packet still forms, but it follows a further
distance behind.

A combination of two factors causes the solution to depend on the accuracy: the hyperbolic
secant solution is an exact analytical result, one that starts at 4 = 0 and returns to 4 = 0. The
numerical solution, on the other hand, is approximate; it can not reproduce the ‘sech’ exactly.

As the solitary packet propagates forward, it leaves behind a ‘residue’, a small error remaining

from the approximate calculation of the ‘sech’. Now the second factor comes into play: 4 = 0
is a position of unstable equilibrium (cf. figure 34); the ‘residue’ in the tail of the packet goes
unstable!

0 ———

0 20 40 60 80 100
X

Ficure 9. A solitary wave packet showing instability in its ‘tail’; @ = 0.5, T' = 11.

This sequence of events is supported by an experiment which produced the solitary packet by
itself. By using initial conditions appropriate for the exact ‘sech’ solution (7.09), the calculation
gave a solitary packet of correct shape and speed for the value ofa chosen. However, after a period
of time, an instability developed in the tail of the packet, as shown in figure 9. It was found that
with an increase in accuracy, the appearance of the instability could be delayed, but not elimi-
nated completely. (In the ‘best’ example, for AT = AX = 0.025, the instability appeared at
T =15.)

Figure 8 shows that the increase in accuracy between cases (4) and (d) delayed the develop-
ment of the second solitary packet, but it did not affect the first packet or the solution near the
origin. Hence, it appears that if we could calculate the exact solution, it would be composed of a
single solitary packet propagating away from a trailing wave train similar to that found for the
Gaussian. The numerical calculation can not reproduce this because it can not calculate the
‘sech’ exactly. The small errors in the calculation, which one expects in any numerical experi-
ment, do not remain small.

Numerous types of localized distributions were tried; most of them produced a wave train like
that for the Gaussian. For example, the initial development of a ‘delta function’ (the initial
amplitude was zero everywhere except at X = 0) was very similar to the Gaussian, with the
solution growing to and oscillating about 4 = 1 at the origin, but the speed of its front was very
nearly a constant value of unity, and the trailing peaks converged much sooner.

However, whenever the initial condition contained the hyperbolic secant in some manner, the
solitary packetwould appear. A ‘sech’ times a Gaussian, a ‘sech’ plus a Gaussian, a ‘sech’ squared
—all produced thesolitary packet separating out and propagating ahead. Even when random noise
was ‘shaped’ by the ‘sech’ (a random function was multiplied by the hyperbolic secant), the
packet appeared. (This last example illustrates the stability of the major portion of the ‘sech’
solution; only in its tails is there danger of instability. This technique was also used to test the
stability of the wave train produced by the Gaussian; it was also found to be stable.)
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THE KELVIN-HELMHOLTZ INSTABILITY 667

7.2. Instability of uniform solutions
As discussed in § 3, exact uniform solutions of (7.01) can be found in terms of the dn function.
They are A =A(T) = dydn (@T|m), (7.10)

where a? = £ A3, m = 2(1—1/43), and 4, is the initial amplitude. The numerical scheme repro-
duced these solutions very well; the initial conditions were simply taken to be

A(X,0) =4, 04(X,0)/0T =0.
The stability of these solutions was tested first by taking as initial conditions
A(X,0) = 4,+0.01 R(X), 0A(X,0)/0T =0,

where R is a random function ranging from 0 to 1.0. The result for 4, = 0.3 is shown in figure 10.
The period of the basic oscillation is about 6 so the sequence shows the solution after the 2nd, 3rd,
4th, and 5th cycles. The pattern in the last picture continues to grow, the solution becoming quite
irregular with positive and negative values.

1.0 N I S R S S R R
: T=30
o.5M/\/\/
0 \J \V
i 4
0.5t 24_
A0
0.5+ 18
0
0.5F 12 ]
0F
1 1 | 1 1 1 | | 1

0 20 40 60 80 100
X

Ficure 10. Instability of an oscillating uniform solution to a random disturbance; 4, = 0.3, period ~ 6.

In order to ensure that the discontinuous nature of the initial condition had no influence on the
occurrence of this instability, the initial conditions were next taken as

A = Ay+0.01sin (@X), 0A(X,0)/dT = 0,

i.e., uniform plus a small sinusoidal disturbance. The boundary conditions were periodic with
Xj, taken to be 20w so that« could assume the values 0.2, 0.4, ..., 2.0. (For the largest«, there were
fifty grid points per wavelength.) 4, was chosen as 1.1, 1.2, ..., 1.7; for 1.1 < 4 < 1.4 the basic
solution is the dn function, for 4, > 1.5 it is the cn function. (4 < 1 need not be considered since
that would also give the dn function, cf. figure 24.) The basic uniform solution was first deter-
mined for each value of 4,. Then, for a particular value of o, the sinusoidal perturbation was
included, yielding the ‘total’ solution. Subtraction of the two gave the perturbation solution.
The stability diagram, figure 11, was then determined on the basis of whether the perturbation
grew beyond its initial value over a period of the basic (uniform) oscillation.
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668 M. A. WEISSMAN

Although rather crude, the diagram is sufficient for our purposes; it shows the existence of the
instability and of a well-defined stability boundary. We note that the larger the amplitude of the
basic oscillation is about 4 = 1, the more unstable it becomes. When 4 = 1, the steady-state
uniform solution, it can be shown (by a linear perturbation analysis) that all disturbances are
stable (this holds for the two-dimensional case as well).T The limit & — 0 could not, of course, be
considered by this method, but along the line a = 0, the case of a uniform perturbation, there
must also be stability. This can be seen from § 3, where exact (total) solutions are discussed for the
uniform case. In particular, figure 35 shows that there are closed trajectories in the phase plane
(forG=1>0and N= —1 < 0). Asmall (uniform) perturbation to one of these solutions merely
puts the solution onto a neighbouring trajectory. (Of course, in the neighbourhood of the sep-
aratrix, the character of the solution may change substantially, but it would still be ‘stable’
in the sense that the solution remains periodic and returns to its original value after one cycle.)

-+ + + + + + o+ = - -

6 + + + + + + - - - -

S T N
L A

A4,

- + + - = = = = - -
12k + 4+ = = = = = = = -
1.0 | 1 1 1 1 1 1 | | ]

0 0.4 0.8 1.2 16 2.0

Ficure 11. Diagram for the stability of uniform solutions to sinusoidal disturbances:
+ indicates instability;— stability.
7.3. Two-dimensional solutions

In two dimensions, we have equation (2.23)
®4 04 0
RV SV e
again taking 4 to be real. This is normalized by letting 7’ = GiT, X' = (G¥/wy) X, Y’ =
(G¥/wys) Y and A’ = (= N/G)¥4, with G > 0 and N < 0. (7.11) becomes
024/0T2—V24 = A - 43, (7.12)

again dropping the primes, where V2 is the Laplacian operator.

= GA + N43, (7.11)

Equation (7.12) was studied by assuming axial symmetry, in which case

o4, 104

OR? " ROR’

where R is the radial coordinate. Thus, in the numerical scheme, equation (7.03) needed only to

be changed by replacing X with R and adding the term (04/0R|})/R; to the right hand side.

Fourth-order finite differencing was also used for this term:
odpr 1 (-
OR|; ~ 12(AR)

1 Of course, a linear perturbation analysis could also be attempted for the time-dependent solutions considered

above. This yields a linear equation for the perturbation, but the coefficients are time-dependent, being prepor-
tional to dn(T") or cn(T") squared. Thus one may be forced to a numerical solution in any case.

V4 =

Frot 847, — 847+ AT ).
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THE KELVIN-HELMHOLTZ INSTABILITY 669

The initial and boundary conditions were the same as the one-dimensional case: Gaussian and
hyperbolic secant distributions, as in (7.06) and (7.08) with X replaced by R, and symmetry at
R = 0 and R = R;,. For the Gaussian, the development is similar to that for the one-dimensional
case; at the origin the solution oscillates about 4 = 1, sending forward undulations that steepen
as they approach the ‘front’, which is well defined. However, for the ‘sech’ initial condition, the
solitary packet no longer appears. A different type of characteristic solution forms, a wave train
that appears to be linearly modulated dn function, as shown in figure 124. (For comparison,
figure 124 gives the Gaussian type of solution at the same time.) The speed of the train is greater
than unity and increases when the width of the initial distribution is increased, i.e. when «
decreases. Since this solution does not attempt to return to 4 = 0, it is not affected by the insta-
bility found in the one-dimensional case. The series of peaks are still evolving and may eventually
separate into individual, solitary ‘sech’ packets: a possible exact solution when R - co.

(a) T T ) T T T T . T T T ‘
1.5 .
1.0 1
A
0.5r . §

0

() T T Y T T T T T
1.5

1.0 y
0.5 .
0

1 1 1 1 1 1 1 ! 1

0 20 40 60 80 100

Ficure 12. Two-dimensional, axisymmetric solutions; T' = 45. (¢) Gaussian initial packet; 4, = 0.1, & = 0.5.
(b) ‘Sech’ initial packet; 4, = 0.1, ¢ = 1.0.

8. SUMMARY AND FURTHER DISCUSSION

We have found weakly nonlinear solutions that describe the growth of wave packets and wave
trains in the Kelvin—Helmholtz instability. Of course, the theory is limited in various ways:

(1) In parameter space, it does not apply inside the unstable region except near the neutral
surface.

(2) In terms of the amplitude, it ceases to be valid if the amplitude becomes O(1), that is, if
A = 0(e™). (Physically this means the wave height is the order of the wavelength and the pertur-
bation velocities are the order of the mean flow or the phase speed.) Therefore if the nonlinear
effects do not limit the growth, the theory only indicates the initial stage of the nonlinear develop-
ment.

(3) Intimeand space, the theory only holds for scales O(e~!) (in the marginally unstable case).
Beyond these times and distances, other nonlinear effects, which we have not calculated, might
become important.

t For a further discussion of the validity of multiple scaling techniques, see Mahony (1972).
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670 M. A. WEISSMAN

We have derived the governing equations for the amplitude, in such a way that they take the
elegant form of (2.01) and (2.02). That is, the coefficient of an nth-order derivative (with respect
to a slow scale) is multiplied by the corresponding nth-order derivative of the characteristic
function.? This fundamental form of the (linear) operators arises because the method of multiple
scaling is basically an expansion of the (linear) operators of the original system. As shown by
Newell (1972, 1974) and Weissman (1973), one may consider an arbitrary system of the form

L(0/0x,S) ¢ = nonlinear terms (O (e)),
where & is a partial differential operator with constant coefficients; % can be considered to be

a_function of 0/0x = (0/0x, 0/0y, 0/0t) and S, a stability parameter. The lowest order solution is

¢ = Aexp (ik-¥) +c.c.,
where k = (£, £, — o), provided
F(k,S) = L(ik,S§) = 0.

When multiple scaling and a perturbation in § is introduced,
LD = L(0)0Xy+pd/0X, +p20/0X,+...,8+ ),
where X,, = u™%, |#| < 1. This can be expanded in a multiple Taylor’s expansion, i.e.
P = P(0)0X,,8) +pL;0/0Xy,;
+ (3L ;02/0X,, 00X+ Z ;0/0Xy) + ... + AZ,
(summation over i, j = 1,2, 3) where the £, £ ,;, etc., are simply the derivatives of .# with

respect to its sth, jth, etc., arguments and % is the derivative with respect to §. Therefore, when
these operate on the lowest-order solution (at higher order),

_0%(ik,S)  .0F(k,S)

2 . (ik,S) = = —iF

1 02

_ P(ik,S)  BF(k,S)
= 3(ik,) O(ik;) ok, ok,

5 (ik, S)

= _F,,,:j CtC.,

showing that the various derivatives of F will always multiply the long-scale derivatives. This
argument can easily be extended to systems of equations, to multiwave solutions, etc. Note thatitis
independent of the balance between y, 4 and €. As noted by Newell (1974) (and verified inde-
pendently by the author), it can also be extended (not so easily) to systems having non-constant
coeflicients which yield ‘modal’ (and non-singular) solutions in one or two directions. (In this
case, F can be defined as a particular integral involving the eigenfunction.)

By using the general system (2.01) and (2.02), the proper amplitude equations were found for
the different regions of parameter space. The main determining factor was the vanishing or non-
vanishing of the first derivative of F. In particular, at the critical point for the instability, i.e.
at the minimum of the neutral surface, a second-order, hyperbolic equation was found. Since this
is basically due to the coalescence of modes on the neutral surface, a necessary feature of inviscid
flow, it must be typical of other ‘inviscid’ instabilities. However, the nonlinear terms may be
different. For example, in Pedlosky’s (1972) baroclinic flow, there is a second-order correction to
the mean flow—a feature that is not present in the Kelvin—-Helmholtz model considered here.
Even though the resulting nonlinear terms are different, the solutions are quite similar. Solitary

1 This was first pointed out to the author by L. F. McGoldrick in 1970.
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THE KELVIN-HELMHOLTZ INSTABILITY 671

wave packets of hyperbolic-secant shape were also found, but their speed and width depended
on the amplitude in the centre of the packet. (The packets found here have fixed amplitude; the
speed depends only on the width.) Thus, it is reasonable to expect that the other solutions found
here are also typical of inviscid instabilities in general, although perhaps differing in detail.

- The solutions to the unstable initial value problem, both linear and nonlinear, show the de-
velopment of sharp fronts. These propagate at the multiple values of the group velocity (multiple
values, two in each direction, arise because of the coalescence of modes). The wave packet as a
whole travels with a ‘convection velocity’, the mean of the multiple group velocities. When the
nonlinear effects are stabilizing, the numerical calculations show that the amplitude undergoes
decaying oscillations in the centre of the packet about the characteristic amplitude

Qeq = |FUA/NI%‘

Undulations continually propagate from the centre to the fronts, where they pack closer and
closer together.

However, a dramatic change was found in this general pattern whenever the initial condition
contained the hyperbolic secant. Even when the initial amplitude was very small, solitary wave
packets formed and separated themselves from the main part of the solution, travelling much
faster than the group velocities. This behaviour must be related to the fact that the solitary wave
packet, of the form of the hyperbolic secant, is an exact solution.

These solitary solutions are reminiscent of ‘solitons’, the exact nonlinear solutions which
emerge from rather general initial conditions in certain conservative wave systems (such as the
Korteweg—de Vries equation; see, for example, Scott ¢t al. 1973; Whitham 1974). Our solitary
solutions emerge in the same way and travel with the predicted speed, but they must not
be termed solitons’ because our unstable flow does not admit the conservation principles found
in the other systems. The other attributes of solitons, such as passing through each other, could
not be tested because of the instability that developed in the ‘tail’ (see §7.1).

Numerical experimentation also uncovered another important result. The uniform time-
dependent oscillatory solutions, which have been applied by Drazin (1970) and Nayfeh & Saric
(1971, 1972) to the Kelvin-Helmholtz instability and by Pedlosky (1970) to the baroclinic
instability, are in fact unstable to spatial modulation. When the oscillation about aeq was large
enough, small (spatially dependent) perturbations were found to grow and to eventually
dominate the solution.

Other new results have come from the application of the amplitude equation to the case of
spatial instability. In order to have steady-state exponential growth with distance away from an
oscillating source (‘convective’ instability), the convective velocity, which depends on one’s
frame of reference, must be greater than the spreading rate of wave packets. For the case of the
lower layer at rest, (in the mean), we found that this condition amounts to

Pi/p2 > 3.
When convective instability is possible, the spatial growth rate is related to the temporal growth
rate via the product of the multiple values of the group velocity:
/s = (ofog)h
When convective instability is not possible, linear theory indicates that there is no steady-state

solution (‘absolute’ instability). However, we have found that if nonlinear effects are considered
and are stabilizing, they prevent unlimited growth and thus allow steady-state solutions. These

62 Vol. 2go. A.
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672 M. A. WEISSMAN

take the form of the hyperbolic tangent, which, for small initial amplitudes, grows linearly with
distance from the source.

Some of the other results obtained here can be summarized, and illustrated, by considering the
application of the theory to the case of air blowing over water. Kelvin’s original aim in proposing
the model appears to have been to explain the generation of waves by the wind, but as he himself
pointed out, the critical wind velocity far exceeds that for which waves are observed. Nevertheless,
the ‘Kelvin—-Helmholtz mechanism’, a pressure distribution on the water surface in phase with
the wave crests, is always present, even when waves are growing due to other effects (Miles
1959). This mechanism is most effective for waves of the order of the critical wavelength, 1.7 cm,
and one would think that it must play a part in their generation.

If waves were to be generated on the air-water interface by Kelvin—-Helmholtz instability,
they would be highly transitory in nature. As mentioned above, in order to have a steady-state,
small-amplitude (linear), spatially-growing solution in a frame of reference with the lower fluid
at rest (in the mean), the density ratio must be greater than 0.5, a condition far from satisfied by
air over water, for which the density ratio is 0.0012. In addition, we found in §2 that for a density
ratio less than 0.283, the nonlinear effects are destabilizing. Thus, if an instability appears, for
either sub- or super-critical conditions, it will not remain small. The flow will reach some highly
nonlinear state that is indescribable by perturbation techniques.

It is possible that Kelvin—Helmholtz instability is responsible for ‘ cat’s-paws’, the extremely
wrinkled pattern with scales of the order of 1-2 cm that appears when a gust of wind strikes the
water surface. This phenomenon seems to satisfy the requirements of being transitory and highly
nonlinear. The notion that spindraft, a spray of droplets over the sea surface, is caused by Kelvin—
Helmbholtz instability (Kelvin 1884; Phillips 1966) is also consistent with the nonlinear theory.

However, some recent works by Weissman (1976) and Valenzuela (1976) raise doubts on the
suitability of the inviscid, discontinuous model to the flow of air over water. Weissman (1976)
studied a continuous model with constant shear layers on each side of the interface. The flow was
taken to be inviscid; however, the shear on the two sides was chosen to satisfy the viscous shear
stress condition. It was found that the inclusion of boundary layers greatly destabilizes the flow.
Even when the thicknesses of the boundary layers tend to zero, the flow is unstable for lower
values of velocity difference than in the Kelvin—-Helmholtz model (for reasonable values of
surface drift velocity). This is due to the presence of a mode of instability that is not present in
the original model, a coalescence of surface waves and boundary layers waves. The mode of
instability found in the discontinuous model (a coalescence of surface waves) is still present, but
it appears at wind speeds higher than those predicted by the original model (as also found by
Miles (1959)).

Valenzuela (1976) considered a completely viscous quasi-laminar model, chosen to conform to
Larson & Wright’s (1975) experiment. The boundary layers on each side were log-linear pro-
files, suitable for turbulent flow. Since Valenzuela’s results (for waves in the range 0.7 to 7.0 cm
wavelength) agree very well with the experiment, it may be that shear layers and/or viscous
effects are essential in predicting the instability of the air-water interface on these scales of
motion.

Most of this work was completed when the author was a student in the Department of the
Geophysical Sciences at the University of Chicago, as partial fulfilment of the requirements for a
doctorate. I am indebted to Professor L. F. McGoldrick and Professor J. Pedlosky for many
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helpful discussions and suggestions at that time. Financial support was provided by the Office of
Naval Research under contract no. N00014-67-A-0285-0002, task no. NR 083-214, and com-
puter time by the National Center for Atmospheric Research, which is sponsored by the National
Science Foundation. I would also like to thank Professor J. T. Stuart, F.R.S., and Dr M. Gaster
for further support and encouragement throughout the intervening years, and the Director, the
National Maritime Institute, for the use of institute facilities which enabled the completion of this
work.

APPENDIX A. DERIVATION OF THE AMPLITUDE EQUATIONS

The model consists of two layers of inviscid incompressible immiscible fluids of semi-infinite
extent, separated by a horizontal interface and flowing relative to each other with uniform and
constant velocities. In a frame of reference imbedded in the lower fluid, the velocity of the upper
fluid is UP, the magnitude of the velocity difference between the layers, and is taken to be in the
x-direction. (The superscript D refers to dimensional quantities.)

For irrotational disturbances, the velocity potentials of the perturbation satisfy Laplace’s
equation:

or 02
V2¢n = (ax2+ +azz) ¢n = (n = 13 2)’ (A 01)

where n = 1 indicates the upper layer, z > 0; and #n = 2, the lower layer, z < 0. The spatial
variables have been non-dimensionalized by L, a typical scale for the wavelength, and the velo-
city potential by ¢VL, where V is the scale for UP and €V is the magnitude of the perturbation
velocities (0 < € <€ 1).

The interfacial boundary conditions are evaluated at zP = {P (x, y, ¢), the position of the inter-
face. If H is a measure of the magnitude of {P, this becomes z = (H/L) §(x,y,1).

The kinematic condition at the interface is

L eL(at [J’Lé>“aac)§J"':V¢'V€ =13, .

where U; = U, U, = 0 and time has been non-dimensionalized by L/V. For the linear balance,
we set H/L = e. Using Taylor expansions about z = 0, such as

bn|  _ 0Py Py,

B
1 2 2 __ TN
ol Il RS e

0x 022,

...,

where |, indicates evaluation at z = 0, and using (A 01), we can write (A 02) as

B = (5+ug) e+ ln+efv-[ov(E| )]} m-n2, @o

correct to O(e?).
The dynamic interfacial condition is that any pressure difference across the interface is due to
the surface tension; that is,

ot - B8

evaluated at zP = {P, where 7 is the surface tension. The total pressure can be expressed as a
mean hydrostatic part plus a (non-dimensional) perturbation pressure p,,; that is,

PP = —ppgzP +epR V3, (x,y,2,8) (n =1,2),

62-2
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where pP is the density of the layer and g is the acceleration of gravity. Then, with non-dimen-
sionalization of the other terms, the pressure condition becomes

P2p2—p1py = §E—T(V3E) (1 462V VQ)‘%

at z = ¢¢, where Pn=pPR/(PP+p?) (n=1,2), (A 044)
&= (2 —pP) gL/ (p? +pP) V? (A 04))
7 =1/(pP +pP) VL. (A 04¢)
Now expanding the surface tension term and the pressure terms, we obtain
ne 0,
Papalo—p1p1lo = 6TV~ 6@[/’2 éiz —P17A7 al’; ]

10 [p | | | Hiervo (e (a0s)

correct to O(e?). The kinematic pressure p,, is then related to the velocity potential by the integral
of the perturbation momentum equations (i.e. Bernoulli’s equation for the perturbation):

0 0
po=—(5+Unz) 0~ 3e(V8,.58) (2= 1,2). (4 06)
Note that ‘natural’ space and Velocity scales would result if we chose to make § = 7 = 1. For
then,
o = [7/(p? —p?) g]}, } (A 07)
and V = {[(p2 —p?) £713/ (p? +p2)}.

Nevertheless, we leave L and V arbitrary for now, and thus leave § and 7 in the equations, in
order that the individual influences of gravity and surface tension can be traced through the
development.

Equations (A 01), (A 03), (A 05) and (A 06) form our basic set of equations, with the usual
boundary conditions that

V¢,—>0, as |z|>00, n=1,2. (A 08)
At this stage we introduce the two sets of slow variables as discussed in the introduction. That

is, we assume that ¢ = &Ky, Yoy Toy Xy Yoo Ty Xs Yor T,

P = Pu(Xos Yo, T, X1, Y1, T3, X, Yo, T, 2),

bn = pn<X0> Y0> T;)’ Xh Yl, Tl, Xo, Yza T2’ Z),

where (X, Y, T) =e(xy,t) (r=0,1,2).

Then the derivatives must be transformed; for example,
_a_._>_9._+ a +€2__a.._.._2 r 0
xoX, Cox, Tt ex, T 2 ex,

02 r O V(s O < orps O
s (37ag) (3oax) - 27 axax,
where the summation is over 7, s = 0, 1, 2. (The reader should not be dismayed at the appearance

of all these variables. Once the point of interest in parameter space is determined, some will
either drop out of the final equation, or be eliminated by suitable transformations.)
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THE KELVIN-HELMHOLTZ INSTABILITY 675

A small perturbation into the unstable region could be taken by letting U = Un +4, |4] < 1,
where Un, corresponds to a point of marginal stability. However, we want the following develop-
ment to be applicable to all regions of parameter space. Therefore, let us merely replace U by
U + 4 in the equations. If Uis marginal, 4 > 0 will cause the wave (of fixed wavenumber) to be
linearly unstable, but if U corresponds to a point in the stable region, 4 may be set to zero without
loss of generality, for it would only give rise to a small shift in frequency or wavenumber (this can
be seen from the dispersion relation, (A 13), or from the amplitude equation appropriate for the
stable region, (2.05), with the 4 term retained).

With these preliminaries aside, we now introduce perturbation expansions for the dependent

variables, C =04 el® 4 2@ .,
G = D+ ..., (A 09)
Pa=tP

and the expansions of the derivatives into (A 01), (A 03), (A 05), (A 06) and (A 08). The equa-
tions separate into successive systems of linear equations as follows:

First order, O(1) (the linear problem).

V2D = 0, (A 10q)
3¢ [0z]o— D, {® = 0, (A 100)
PO +D, 6D = 0, (A 100
pa o= p1O8|o— ZEP +FVEED = 0, (A 10d)
Vo) >0 as |z|—>o0, (A 10¢)
where D, =d/ot+U,0/0x,

x, , ¢ has replaced X, ¥,, Ty, and it is understood that z takes on the values 1 and 2. A single-wave
solution satisfying (A 10a), (A 105), (A 10¢) and (A 10¢) is

LW = Aexp (i0) +c.c., (A lla)
¢ = B, exp (10 +m, z) +c.c., (A 115)
PP = C,exp (10 +m,z) +c.c., (A 11¢)
where 0 =#x+ly—ot, m,=(—1)%, k= +.(£2+12),
- — 2
Bn=—i(a————%—'€—)A, C, = @.#U.Q.A,

and c.c. indicates the complex conjugate of all preceding terms. 4, B, and C, are functions of the
slow variables. Substitution into (A 10d) gives the characteristic equation,

F(o, £,¢4,U) = py0°+ps(0— U£) — (gk +7x%) = 0, (A 12)
and from this, the dispersion relation,
o = p, Uk (I +7k3—py p, U£%)} (A 13)

(where use has been made of the identity p; +p, = 1).
The points of marginal stability lie on the ‘neutral surface’,

U = Un(4,¢) = [(g+76%) [py py 21, (A 14)
62-3
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676 M. A. WEISSMAN

The cross-section of this surface in the U — £ plane is the ‘neutral curve’, as depicted in figure 1.
Un has 2 minimum at - (g/f)% e [=0={le

thus, the critical velocity difference for instability is

. . U =[2(g7)}/p,pe]? = Ue.
In dimensional terms,
£ = Ao/L = [(p? —pD)g/T]%,
UP = UV = {2[(p} ~pP) 7]t (pP +pP) [P PP}
Second order, O(e)

V2@ = —2(V.V, gD, (A 15aq)
3¢9/0z]y—D,, £ = Dy, (O + V. [EOV($D]o) 1 (A 150)
P+ D, ¢2 = — Dy, ¢ — H(VD - V), (A 15¢)
potly=py g0+ 72 = ~277- 9,000, L] -p L2 | (a1sa)
VoD > —V, ¢, as |z| >0, (A 15¢)
where D1n=£=l+Uné%l~, V, = (5%’6%’1’ O).

Evaluating the right hand sides using (A 11),
V24® = —2ik-V, B, exp (i0 +m, z) +c.c., (A 164)

@)
O%S; -D,¢® = D,, dexp (if) — 2«24 B,, exp (2i0) +c.c., (A 160)
0

pgf) +Dn ¢(n2) = [Dln Bn exp (i0+mnz) +C'C‘] _2Klen|2exp <2mn Z); (A 166)
patfPlo il O+ 7V

= —2Fik-V, Aexp (i0) —k(py Cy+ p, Cy) [A exp (2i0) + A*] +c.c., (A 16d)

VP -0, as |z|-—>o0, (A 16¢)

where k= (£7)
and 4* is the complex conjugate of 4.

The forcing terms on the right hand sides are of three types: mean, harmonic (or fundamental)
and second harmonic. The harmonic terms could produce resonance, and thus a secularity, in our
perturbation expansion. However, in seeking the harmonic part of the solution, we will find an
equation that the amplitude must satisfy in order to ‘ remove’ the secularity. To find the harmonic

part, let §® = AP exp (i0) +c.c.,
PP = (BRA+FPz) exp (10 +m,, z) +c.c.

The term linear in z in the coefficient of ¢{?) is necessary to satisfy (A 16a). Although this term
arises because of resonant forcing in (A 164), it is not secular because ¢{ satisfies the boundary
conditions (A 16¢). (An alternative approach would be to eliminate the term linear in z by
allowing B, to be a function of a long vertical variable, Z; = ez.)
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THE KELVIN-HELMHOLTZ INSTABILITY 677

Considering only the harmonic terms, (A 165) gives B in terms of A®’ and the forcing terms,
and (A 16¢) in turn determines the pressure. Substitution of the pressure into (A 16d) yields
(after a bit of algebra)

[ps 0%+ py (0~ UA) — (g +7c) | AP
= —i{[2p, 0 +2p, (0 — U#)] 34 /0T,
+[20,(0— U£) U+ (& + 37x?) £/x] 04 /0X,
+[(& + 37«2) £ /] 04/0Y,}. (A 17)
The coeflicient of 4{? vanishes since it is the characteristic function. Therefore the right hand side
of (A 17) must also vanish, producing a condition to be satisfied by 4 with respect to X, ¥; and

T;.Itcan be seen that the coefficients here are the various derivatives of the characteristic function;
that is, this condition can be written

0F 04 0oFo04 0Fo4d

AP is arbitrary to this order, but since it merely repeats the lowest-order solution, we may set
it to zero. (This may be thought of as a normalizing condition.) The rest of the harmonic solution
then represents a phase shift of the velocity potentials and pressures with respect to {® when the
amplitude is changing with time or space. Completing the solution for the mean and second-
harmonic forcing, we find the total solution at this order is

{® = yrkA?exp (2i0) +c.c., (A 194)
P2 = (B +FPz) exp (10 +m, z) + B exp (210 + 2m,, z) +c.c., (A 190)
# = =20 B[R exp (2m,2) +[(CR +GiP2)
x exp (10 +m,, z) + CB exp (2i6 + 2m,, z) +c.c.], (A 19¢)
where ¥ = [palor — Uy = py 0] (276 — 1),

B = [Dy, A+ (0~ U,#) (k-V, 4) /x%] /my,

FP =—(0c-U,£) (k-V,4)/x2,

B = i(o—U, £) (1—ym,/x) 4

0' Ué’[

ce = oD, 4+ T=UA 4.y A)]

(7= n’{)z(k v, 4),

CH = —2(c—U, £)?(1—ym,[x) A2
Note that the second-harmonic coefficient is singular when
K = (g/2»7-)% = Kres:

This indicates that the second-harmonic forcing terms are secular for this value of k, or in other
words, that the second-harmonic is also a solution of the homogeneous equations. This secularity,
called ‘second-harmonic resonance’, can be handled by allowing both the fundamental and the
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678 M. A. WEISSMAN

second harmonic to appear in the lowest-order solution, and then their products appear in the
second-order equations. For stable waves (i.e. below the neutral surface), the situation is very
similar to that for surface gravity-capillary waves and has been well studied (see McGoldrick
1970 for a review). However, since kg is independent of U, second-harmonic resonance can also
occur for marginal and unstable waves and this has not been studied.t We will not consider this
case in detail here as our main concern is the effect of nonlinear self-interaction, but in appendix
B we consider the form the amplitude equations would take. For the most part, then, and par-
ticularly for the analysis of this section, we assume that

K 7 Kreg:
To be more precise, since €{® must be very much less than 1, we must have (k —k,q5) > €.

Third order, O(e?)
VAP = — 2V -V, 0 -2V -V, 0 - Vig), (A 200)

| D, = D, €0+ Dy, (044,24 . [€OV (2] ] + V- [COV (D))
0

L1145 R 44 [conev (B£])], (200

(1)
PP+, 40 = ~ Dy b~ Dy 80— A, L VHD-VHD - VoDV, 60, (A 200)

J

P o = p1 7)o — EE® +TVH®

" " - & o
= —27V.V,{W—2FV.V, £@ —#V3LO _¢® [pz_z_ -

179z

op op 024D 224D
_eof p 80 _ O g pane| , 050|000
g [P az : 1 oz 0] 2(€ ) [ azz 0 1 0z2 o
FEF(VIC) (VL0 VEO), (A 20d)
VoD > — V9P -V, 6P, as |z|>o0, (A 20¢)
0 0 (90 @ _[Afe?, n=1,

The right hand sides are now evaluated by using the lower-order solutions. Fortunately we
need not write out all of the terms. The harmonic forcing terms will again produce a secularity,
the removal of which gives the amplitude equation we are seeking. Therefore, we write out only
the harmonic terms, using ‘...” to indicate mean, second-harmonic and third-harmonic terms:

Vig® = {—2ik.V, B, - 2ik-V, BY — ViB, — 2i(k-V, F®)z} exp (0 +m,2) +c.c.+..., (A 21a)
0P /02|y — D, §® = {Dy, A +14A, A +&2(yk + km,) Bk A2

—2k2B3) A* —k2m,, B, |A|?} exp (i0) +c.c. + ..., (A 215)
pD+D,, ¢ = {~Dy, B, — Dy, BY —~ (D1, FP) z—i#A, B}

x exp (10 +m,, z) — 4k B} BA exp (10 + 3m, z) +c.c. + ..., (A 21¢)

t Nayfeh & Saric (1972) consider second-harmonic resonance, but their analysis only holds in the stable region

(see appendix B). Kelly (1967) has considered second-harmonic resonance of marginal waves in other unstable
shear flows.
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THE KELVIN-HELMHOLTZ INSTABILITY 679

Pat]o— P10 — GE@ +TVE® = {—2Fik-V, 4
— TV A+ 4k3(py| By|2 + py| B, |?) 4
—26(py C +py C) A% —7i*(py Cf + p CF) A2
—K3(py Cy— p1 Cy) | A]? — $63(py CF — p CF) 42
_%fK4IA|2A}exp (10) +c.c.+..., (A 21d)

Vg -0, |z|—>oo0. (A 21¢)
To satisfy (A 21a), ¢ must take the form
PP = [BR + FPz + HPz?] exp (10 +m,, z) + c.c.

F® and H{ are determined from (A 214) and B) from (A 215). Then, proceeding as before, the
pressure is calculated from (A 21¢) and substituted into (A 214d). Finally (after quite a bit of
algebra; the coefficients must all be replaced by their definitions in terms of A4), the amplitude
equation appears, butitis quite complicated. Use of (A 18) clearsit up somewhat, and the follow-
ing form is found:

04 _p o4 pod) . 0 24 . 04 024
‘(F”aT Fﬂ”an F"aY) Worgm —Forgg g, + ¥ uegm P gx oy

024 024

+%F[/57% FM@Y@T (A/e?) Fy A+ N|A]24 (A 22)

The coeflicients of the linear terms are simply derivatives of the characteristic function,
F = py 0+ py(0— UAY — (g + 7%,

and are as follows: F, =2(oc—p, U#),
Fg= —2p, U(o— U#f)— (g + 37?) £/«
Fy= —(§+37k?) {/k,
Foe=2, Fop=-2p,U,
Fee = 20, U+ (2 376 42/ — (3 + 37 Jx,
Fyp = (§—37k2) L4/,
Fyp = (§—37k?) (2 /k®— (& + 37k2) [k,
F,=0, Fy=—-2p £lo—U#%),

[

(A 23)

where use has been made of p; +p, = 1. (The F,, term is included in (A 22) for the sake of illus-
tration. In the Kelvin—Helmholtz model it does not appear (¥,, = 0), but, by the arguments
given in the summary, it might be present in other problems.) The nonlinear coefficient is

( 4gl<‘ 7'K3+4[p20- —pl(a Ui)z] ) (A 24)

27K — gk

N =]

m[.-

Equation (A 22) must be used in conjunction with (A 18).
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680 M. A. WEISSMAN

APPENDIX B. SECOND-HARMONIC RESONANGE

Equation (2.09), the time-dependent-only amplitude equation for waves anywhere on the
neutral surface, fails if k2 = §/27 = k2. This is due to ‘second-harmonic resonance’, the situa-
tion whereby both the fundamental wave and its second-harmonic are free wave solutions (i.e.
both satisfy the dispersion relation). The perturbation expansion fails at second-order because of
resonant forcing by the nonlinear terms. (See McGoldrick (1970) for a review in the context of
ordinary surface gravity-capillary waves.)

Nayfeh & Saric (1972) have considered second-harmonic resonance for the Kelvin-Helmholtz
flow. Their equations — first order in time and essentially the same as McGoldrick’s — hold in the
stable region, but as the neutral curve is approached, their nonlinear coefficients become singular.
This is due to the vanishing of F, on the neutral surface (¥, has been implicitly divided through
on their equations). We have seen in our more general approach (e.g. equations (2.01), (2.02))
that a first time derivative on a long scale must be multiplied by the first derivative of the charac-
teristic function with respect to the frequency, etc. Thus, on the neutral surface, we must have a
second-order equation, even for second-harmonic resonance.

But the second-harmonic resonance does imply that a rescaling is needed between € and A. The
secularity now arises at second order, and to achieve a balance between the instability and the
nonlinearity, we must bring in the terms proportional to A at this order. Thus we must have
A = O(e). The long time scale must also appear at the same order and the operator must be the
second derivative; the choice 77 = et provides for this. (Note that this implies that the expansions
for ¢ and the other functions will be in powers of ¢%.) Thus, in terms of ¢, the growth rate is much
larger; however, in terms of A, it is the same, O (A?). The nonlinear terms will be of the same form
as those for second-harmonic resonance of surface waves, but the coefficients will be different. It
follows that the equations for the amplitudes of the fundamental, 4,(7;), and of the second
harmonic, 4,(77), when they are resonant and slightly unstable will be of the form

4Py 424, /AT = (Afe) Fyy Ay + N, A3 Ay,

ool
3,2 A2, /dT] = (A/€) Fyy A5+ N, A3

The linear coefficients are the derivatives of the characteristic equation, as before, but those with
subscript 1 are evaluated at k = (#,, £;), where £3+¢3 = k2, and those with subscript 2 are
evaluated at k = (24,, 2/,). The level of shear is given by

_ _ _ GKres + TKpes | ¥
U = Un(h ) = Un (24,20 =[St Tes]

The nonlinear coefficients must be determined by a separate analysis.
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